Giả sử x, y, z là các số dương thỏa mãn điều kiện \(xy^2z^2+x^2z+y=3z^2\)
Tìm GTLN P =\(z^4 \over 1+z^4 (x^4+y^4)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
Vì \(x+y+z=2\)
Ta có \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)
Tương tự \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\) và \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)
Do đó \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)
Vậy \(P\le4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\) và x+y+z=2 \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
Đặt \(\left(a;b;c\right)=\left(x;y;\frac{1}{z}\right)\Rightarrow ab^2+bc^2+ca^2=3\)
\(P=\frac{1}{a^4+b^4+c^4}\)
Ta có:
\(a^4+b^4+b^4+1\ge4ab^2\)
\(b^4+c^4+c^4+1\ge4bc^2\)
\(c^4+a^4+a^4+1\ge4ca^2\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)
\(\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow P\le1\)
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)
Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về
\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)
Sử dụng BĐT AM-GM ta có :
\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)
Bằng cách chứng minh tương tự ta được :
\(b^4+c^4+c^4+1\ge4bc^2\); \(c^4+a^4+a^4+1\ge4ca^2\)
Cộng theo vế các bđt cùng chiều ta được :
\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)
\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)
\(< =>a^4+b^4+c^4\ge4-1=3\)
Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)