K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)

\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)

\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)

\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)

\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)

28 tháng 12 2016

tuyệt

4 tháng 11 2016

\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)

\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)

\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)

\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)

\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)

9 tháng 4 2017

2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)

2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)

2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)

2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)

2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)

2A = \(\frac{4032}{2017}\)

A = \(\frac{4032}{2017}\)\(:2\)

A = \(\frac{2016}{2017}\)

12 tháng 5 2017

Lê Châu bị Điên à

12 tháng 5 2017

lê châu bị khùng à

11 tháng 11 2015

Công thức tống quát:

\(1+\frac{1}{\left(n-1\right)\left(n+1\right)}=1+\frac{1}{n^2-1}=\frac{n^2-1+1}{n^2-1}=\frac{n^2}{n^2-1}\)

Theo đó, ta có:

\(1+\frac{1}{1.3}=1+\frac{1}{\left(2-1\right)\left(2+1\right)}=\frac{2^2}{2^2-1}\)

\(1+\frac{1}{2.4}=1+\frac{1}{\left(3-1\right)\left(3+1\right)}=\frac{3^2}{3^2-1}\)

\(1+\frac{1}{3.5}=\frac{1}{\left(4-1\right)\left(4+1\right)}=\frac{4^2}{4^2-1}\)

\(....................\)

\(1+\frac{1}{2015.2017}=1+\frac{1}{\left(2016-1\right)\left(2016+1\right)}=\frac{2016^2}{2016^2-1}\)

Nhân lần lượt các đẳng thức trên, ta được:

\(S=\frac{\left(2.3.4....2016\right)^2}{\left(2^2-1\right)\left(3^2-1\right)\left(4^2-1\right)...\left(2016^2-1\right)}=\frac{2^2.3^2.4^2...2016^2}{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(2015.2017\right)}=\frac{2^2.3^2.4^2...2016^2}{1.2.3^2.4^2.5^2...2014^2.2015^2.2016.2017}=\frac{2.2016}{2017}\)

 

 

a: \(\Leftrightarrow\dfrac{x-214}{86}-1+\dfrac{x-132}{84}-2+\dfrac{x-54}{82}-3=0\)

=>x-300=0

hay x=300

7 tháng 2 2020

Lời giải:

Xét tổng quát:

1+1k(k+2)=k(k+2)+1k(k+2)=(k+1)2k(k+2)1+1k(k+2)=k(k+2)+1k(k+2)=(k+1)2k(k+2)

Thay k=1,2,....,2015k=1,2,....,2015 ta có:

1+11.3=221.31+11.3=221.3

1+12.4=322.41+12.4=322.4

1+13.5=423.51+13.5=423.5

1+14.6=524.61+14.6=524.6

.............

1+12015.2017=201622015.20171+12015.2017=201622015.2017

Nhân theo vế:

⇒A=12(1+11.3)(1+12.4)(1+13.5)....(1+12015.2017)⇒A=12(1+11.3)(1+12.4)(1+13.5)....(1+12015.2017)

=12.221.3.322.4.423.5.524.6....201622015.2017=12.221.3.322.4.423.5.524.6....201622015.2017

=(1.2.3...2016)2(1.2.3...2015)(2.3.4...2017)=(1.2.3...2016)(2.3....2016)(1.2.3...2015)(2.3.4...2017)=2016.12017=20162017

7 tháng 2 2020

đây là tính nhanh đấy

6 tháng 7 2017

= 4/1.3 x 9/2.4 x 16/3.5 x...x 10000/99.101

= 2.2/1.3 x 3.3/2.4 x 4.4/3.5 x..x 100.100/99.101

= (2.3.4. ... 100/1.2.3. .... 99) x (2.3.4. ... .100/3.4.5. ... .101)

= 100.2/101

=200/101

7 tháng 3 2018

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(\Rightarrow A=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)

\(\Rightarrow A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)

\(\Rightarrow A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)

\(\Rightarrow A=\frac{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}\)

\(\Rightarrow A=\frac{100.2}{101}=\frac{200}{101}\)