chứng minh rằng với mọi n nhuyên dương ta đều có A=\(5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)⋮91\)
b) tìm tất cả các cặp số nguyên p,q TM \(5^{2p}+1997=5^{2p^2}+q^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề.
VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91
Ez nhé
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)
\(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)
Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)
với các bài có với mọi số nguyên dương cứ thay 1 số giá trị vô và thấy đúng thì cái đó đúng
KINH NGHIỆM GIẢI BÀI KHI ÔN THI HSG NHA
với các bài có với mọi số nguyên dương cứ thay 1 số giá trị vô và thấy đúng thì cái đó đúng
KINH NGHIỆM GIẢI BÀI KHI ÔN THI HSG NHA
vd:Gọi 5n (5n+1)-....=P
n=1 =>P=0 chia hết 91
n=2=> P=182 chia hết 91
n=3=> P=8190 chia hết 91
Vậy P chia hết 91 với mọi n nguyên dương đều có :
Câu hỏi của quyetchien tranhuu - Toán lớp 7 | Học trực tuyến