Cho tam giác ABC .gọi H ,G,O lần lượt là trực tâm ,trọng tâm ,và giao điểm của 3 đường trung trực trong tam giác.chứng minh
AH bằng 2 lần khoảng cách từ O đến BC
Ba điểm H,G,O thẳng hàng và GH bằng 2GO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trọng tâm : điểm giao nhau của 3 đường trung tuyến trong Tam giác
Trực tâm : giao giữa ba đường cao
Đường trung trực : là đường vuông góc với 1 đoạn thẳng tại trung điểm của đoạn thẳng đó.
chắc giờ trả lời là trễ lắm rồi, 2021 cơ mà. Nhưng lỡ thì kệ đi.
bn vẽ hình giùm mk đi, hoặc giải thích thế nào là trực tâm, trọng tâm z?
a) Trên tia đối của tia OC lấy điểm N sao cho ON = OC,ta có : \(OM//BN\)và \(OM=\frac{1}{2}BN\)
Vì OM \(\perp\)BC,AH \(\perp\)BC,do đó OM //AH => NB // AH
Cmtt NA/BH
Xét \(\Delta\)ANB và \(\Delta\)BHA có :
AN = AH(gt)
\(\widehat{A_1}=\widehat{A_2}\)(gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> \(\Delta ANB=\Delta BHA\left(g.c.g\right)\)
=> NB = AH(hai cạnh tương ứng)
Mà \(OM=\frac{1}{2}NB\)
=> AH = 2OM
b) Gọi I là trung điểm của AG,K là trung điểm của HG thì IK//AH => IK//OM,do đó \(\widehat{KIG}=\widehat{OMG}\)(so le trong)
Xét \(\Delta KGI\)và \(\Delta OMG\)có :
GI = GM(gt)
\(\widehat{G_1}=\widehat{G_2}\)(đối đỉnh)
\(\widehat{I}=\widehat{M}\)
=> \(\Delta KGI=\Delta OGM\left(g.c.g\right)\)
=> KG = GO
Từ đó ta có : HG = GO.
a,+) Lấy N sao cho : O là trung điểm của CN ; lấy M sao cho : OM là trung trực của BC
\(\implies\) OM là đường trung bình của tam giác CNB
\(\implies\) OM song song với NB ; OM = \(\frac{1}{2}\) NB
Ta có : OM vuông góc với BC \(\implies\) NB vuông góc với BC mà AH vuông góc với BC
\(\implies\) NB song song với AH ( 1 )
+) Lấy S sao cho : OS là trung trực của AC ; mà O là trung điểm của NC
\(\implies\) OS là đường trung bình của tam giác NAC
\(\implies\) OS song song với AN ; OS = \(\frac{1}{2}\) AN
Ta có : OS vuông góc với AC \(\implies\) NA vuông góc với AC mà BH vuông góc với AC
\(\implies\) NA song song với BH ( 2 )
Từ ( 1 ) ; ( 2 )
\(\implies\) NAHB là hình bình hành
\(\implies\) NB = AH ( 3 )
Mà OM = \(\frac{1}{2}\) NB \(\implies\) 2OM = NB ( 4 )
Từ ( 3 ) ; ( 4 )
\(\implies\) AH = 2OM ( đpcm )
b, Ta có : A ; G ; M thẳng hàng ( M là trung điểm của BC ; G là trọng tâm )
GM = \(\frac{1}{3}\) AM \(\implies\) AG = 2GM
Gọi I ; K lần lượt là trung điểm của HG ; AG
\(\implies\) IK là đường trung bình của tam giác HGA
\(\implies\) IK song song với AH ; IK = \(\frac{1}{2}\) AH
+) NB song song OM , mà NB song song với AH
\(\implies\) AH song song với OM
+) AH song song với OM , mà IK song song với AH
\(\implies\) IK song song với OM
\(\implies\) IKG = GMO ( 2 góc so le trong )
+) IK = \(\frac{1}{2}\) AH , mà AH = 2OM
\(\implies\) IK = OM
+) K là trung điểm của AG
\(\implies\) KA = KG = \(\frac{AG}{2}\)
Mà AG = 2GM \(\implies\) KA = KG = GM \(\implies\) KG = GM
+)Xét tam giác KIG và tam giác MOG có :
KG = GM
IKG = GMO ( cmt )
OM = KI
\(\implies\) tam giác KIG = tam giác MOG ( c - g - c )
\(\implies\) IGK = OGM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí 2 góc đối đỉnh
\(\implies\) I , G , O thẳng hàng
\(\implies\) H , G , O thẳng hàng
+) I là trung điểm của HG
\(\implies\) IH = IG = \(\frac{HG}{2}\)
\(\implies\) 2IH = 2IG = HG ( 5 )
+) IG = GO ( tam giác KIG = tam giác MOG )
\(\implies\) 2IG = 2GO ( 6 )
Từ ( 5 ) ; ( 6 )
\(\implies\) HG = 2GO
Trong một tam giác :
+)3 đường trung tuyến đồng quy : trọng tâm
+)3 đường phân giác đồng quy : tâm đường tròn nội tiếp tam giác
+)3 đường cao đồng quy : trực tâm
+)3 đường trung trực đồng quy : tâm đường tròn ngoại tiếp tam giác
Nguyễn Thị Hội là con nào????????????????????????????????????????????????????????????????????????????????????????
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD \Rightarrow OM là đường trung bình của Δ BCD
\Rightarrow OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) \Rightarrow DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) \Rightarrow AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
\RightarrowΔABH=ΔBAD( g-c-g )
\Rightarrow AH = BD mà OM=12DB \Rightarrow OM=12AH
\Rightarrow AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A \Rightarrow PQ là đường trung bình của \large\Delta AG'H
\RightarrowPQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH\Rightarrow PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH\Rightarrow PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
\Rightarrow ΔPQG′=ΔOMG′( g-c-g )
\Rightarrow G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) \Rightarrow G′M=12G′Amà G'M + G'A = AM
\Rightarrow G′A=23AM mà AM là trung tuyến của ΔABC
\Rightarrow G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC \RightarrowG′≡ G
mà G′∈OH \RightarrowG∈OH \Rightarrow O, H, G thẳng hàng ( đpcm )