cho tam giác ABC nhọn, đường cao BD,CE cắt nhau ở H. DE cắt BC ở F, M là trung điểm của BC. chứng minh rằng FH vuông góc AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hơi dài, mình nói sơ sơ thôi nha. Cái hình thì bạn tự vẽ nha.)
Vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và vẽ đường kính \(AK\) của đường tròn này.
Dễ thấy \(K,H,M\) thẳng hàng và \(BKCH\) là hình bình hành.
Bây giờ vẽ \(AF\) cắt \(\left(O\right)\) tại \(L\).
Do các tứ giác \(ALBC,DEBC\) nội tiếp nên CM được \(FA.FL=FB.FC=FD.FE\).
Và suy ra được \(ALED\) nội tiếp.
Nhận thấy \(AED\) nội tiếp trong đường tròn đường kính \(AH\) nên \(AL⊥LH\).
Mà \(AL⊥LK\) do \(AK\) là đường kính. Vậy \(L,H,K,M\) thẳng hàng.
Tam giác \(AFM\) có đường cao \(AD\) và \(ML\) cắt nhau tại \(H\) nên \(FH⊥AM\).
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc KBH chung
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC
=>BK*BC=BD*BH
1
a) ta có A đối xứng với F qua O => O là trung điểm của AF
=> BO là trung tuyến của AF (1)
=> CO là trung tuyến của AF (2)
ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC
=> OA = OB =OC (3)
từ 1-2-3 => Góc ABF = góc ACF = 90
=> AB vuông góc với FB
AC vuông góc với FC
mà CH vuông góc AB => CH // BF
BH vuông góc với AC => BH//CF
Xét tứ giác BHCF có
CH // BF
BH//CF
=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo
M là trung điểm của BC
=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM
=> H đối xứng với F qua M
b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF
=> OM là đường trung bình
=> OM =1/2AH <=> AH/OM=2
vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC
ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )
=> OM // AH => góc HAG =góc GMO (2 góc so le trong)
xét tam giác AHG và tam giác MOG
có :góc HGA =góc MGO (2 góc đối đỉnh)
góc HAG =góc GMO (cmt)
=> đồng dạng (gg) => AH /OM = AG/MG =2
<=> AG=2MG <=> AM = AG + MG =3MG
<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)
=> G là trọng tâm của tma giác ABC