Tìm x biết :
a) \(\frac{1}{2013}\times x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012\times2013}=2\)
b)\(2x+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}+\frac{73}{72}+\frac{91}{90}=10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}+\frac{73}{72}+\frac{91}{90}=10\)
=> \(2x+\frac{6+1}{6}+\frac{12+1}{12}+....+\frac{90+1}{90}=10\)
=> \(2x+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+10=10\)
=> \(2x+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}=0\)
=>\(2x+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}=0\)
=>\(2x+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=0\)
=> \(2x-\frac{1}{10}=0\)
=>2x=\(\frac{1}{10}\)=> x=1/20
mình có bị nhầm chỗ dấu suy ra thứ 3. đáng lẽ ra biểu thức đó cộng 8 chứ k phải cộng 10 do mình sơ ý nên bạn hãy sủa lại chỗ ấy
= \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)
= \(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)
= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
= \(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
= \(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)
a)
\(=\frac{7\cdot7\cdot8\cdot8\cdot9\cdot9\cdot10\cdot10\cdot11\cdot11}{6\cdot8\cdot7\cdot9\cdot8\cdot10\cdot9\cdot11\cdot10\cdot12}\)
\(=\frac{7\cdot11}{6\cdot12}\)
\(=\frac{77}{72}\)
b)
\(=1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)
\(=6+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=6+\frac{1}{2}-\frac{1}{8}\)
\(=6+\frac{3}{8}\)
\(=\frac{51}{8}\)
Chia thành...a và b nhé.
Bg
a)Ta có: \(\frac{49}{48}.\frac{64}{63}.\frac{81}{80}.\frac{100}{99}.\frac{121}{120}\)
= \(\frac{49.64.81.100.121}{48.63.80.99.120}\)
= \(\frac{7.7.8.8.9.9.10.10.11.11}{6.8.7.9.8.10.9.11.10.12}\)
= \(\frac{7.11}{6.12}\) (chịt tiêu trên dưới)
= \(\frac{77}{72}\)
b) Ta có: \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}\)
Có 6 số hạng (đếm)
= \(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)
= \(1+1+...+1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
= \(1.6+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
= \(6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
= \(6+\frac{1}{2}-\frac{1}{8}\)
= \(\frac{13}{2}-\frac{1}{8}\)
= \(\frac{51}{8}\)
Hơi dài....
Cau A dat thua so chung la ra
Cau B tach mau thanh h cua 2 thua so lien tiep
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)
\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)
\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}\)
\(\Rightarrow A=\frac{10}{11}\)