Các bạn giải câu d nhé:
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Tia phân giác góc HAC cắt BC tại E. Vẽ EK vuông góc với AC tại K.
a) Chứng minh rằng: tam giác AHE = tam giác AKE và AH=AK
b) KH cắt AE tại I. Chứng minh rằng: AE vuông góc HK từ đó so sánh KE và HI.
c) AH cắt KE tại D. Chứng minh AE vuông góc CD.
d) Tia phân giác góc ABC cắt AE tại M. Chứng minh rằng BM//CD.
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.