K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

a)

Áp dụng định lí py-ta-go cho tam giác ABC vuông tại A ta có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow18^2+24^2=BC^2\)

\(\Leftrightarrow BC^2=900\)

\(\Leftrightarrow BC=30\left(cm\right)\)

Do CD là phân giác \(\widehat{ACB}\)

\(\Rightarrow\frac{AC}{AD}=\frac{BC}{BD}\Leftrightarrow\frac{24}{AD}=\frac{30}{BD}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{24}{AD}=\frac{30}{BD}=\frac{24+30}{AD+BD}=\frac{54}{AB}=\frac{54}{18}=3\)

Ta có : \(\frac{24}{AD}=3\Leftrightarrow AD=8\left(cm\right)\)

            \(\frac{30}{BD}=3\Leftrightarrow BD=10\left(cm\right)\)

Vậy BC = 30 cm

       AD = 8 cm

      BD = 10 cm

31 tháng 3 2018

b)

Xét tam giác BHA và tam giác ABC có :

\(\widehat{BAC}=\widehat{AHB}\)

chung \(\widehat{ABC}\)

\(\Rightarrow\) tam giác BHA đồng dạng với tam giác ABC (g-g)

24 tháng 4 2023

có cứt :)))) 

lol

 

a: BD/AD=BC/AC=5/4

b: Xét ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

c: Xét ΔDAC và ΔDKB có

góc DAC=góc DKB

góc ADC=góc KDB

=>ΔDAC đồng dạng với ΔDKB

=>DA/DK=DC/DB

=>DA*DB=DK*DC

a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=9,6cm

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

b: Sửa đề: AB,AC

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

AM=AH^2/AB=9,6^2/12=7,68(cm)

AN=AH^2/AC=9,6^2/16=5,76(cm)

\(S_{AMHN}=7.68\cdot5.76=44.2368\left(cm^2\right)\)

22 tháng 6 2023

 

  1. a) Ta có:

    • Diện tích tam giác ABC là S = 1/2 * AB * AC = 1/2 * 3cm * 4cm = 6cm^2.
    • Vì AD là đường cao của tam giác ABC nên diện tích tam giác ABC cũng bằng 1/2 * AB * CD, tức là: S = 1/2 * AB * CD = 3CD.
      Từ đó suy ra: CD = 2cm.

    b) Gọi E là hình chiếu vuông góc của D trên BC. Ta có:

    • Tam giác ADE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác BDE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AC.
      Do đó, ta có:

    • AI/AB = DE/BC (vì tam giác ADE và tam giác ABC đồng dạng)

    • DE = AD - AE = AD - CD = AD - 2 (vì tam giác ADE vuông tại E và CD là hình chiếu của AD trên BC)

    • BC = AB + AC = 3 + 4 = 7
      Từ đó suy ra: AI/AB = (AD - 2)/7

    Vậy, ta có: AI*AB = (AD - 2)AB/7 = ADAB/7 - 2AB/7 = AD^2/3 - 2/7.

    c) Gọi F là hình chiếu vuông góc của D trên AB. Ta có:

    • Tam giác ADF và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác CDF và tam giác ABC đồng dạng với tỉ số đồng dạng CD/AC.
      Do đó, ta có:

    • AI/AB = DF/AF (vì tam giác ADF và tam giác ABC đồng dạng)

    • AK/AC = CF/AF (vì tam giác CDF và tam giác ABC đồng dạng)

    • DF + CF = CD = 2

    • AF = AB - BF = AB - AK = 3 - AK (vì BF là hình chiếu của B trên AC và AK là hình chiếu của D trên AC)

    Từ đó suy ra: AI/AB = DF/(DF + CF) = DF/2 = (AD^2 - AF^2)/(2AD^2) = (AD^2 - (AB - AK)^2)/(2AD^2) = (2AK*AC - AK^2)/(2AD^2) = AK/AD - AK^2/(2AD^2).

    Từ b) và c), ta có: AIAB = AD^2/3 - 2/7 = AKAC*(1 - AK^2/(2AD^2)).

    d) Gọi H là hình chiếu vuông góc của I trên BC. Ta có:

    • Tam giác ADH và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác IDH và tam giác ABC đồng dạng với tỉ số đồng dạng AI/AC.
      Do đó, ta có:

    • ID/AI = DH/AB (vì tam giác IDH và tam giác ABC đồng dạng)

    • DH = CD - CH = 2 - CI (vì tam giác ADH vuông tại H và CI là hình chiếu của I trên BC)

    • AB = 3, AC = 4, BC = 7

    Từ đó suy ra: ID/AI = (CD - CH)/AB = (2 - CI)/3.

    Do đó, ta có: ID/AI = (2 - CI)/3 = (2 - AK)/4 (vì AIAB = AKAC từ c))

    Từ đó suy ra: ID = (2AI - 3AK)/4.

    Vậy, ta có: ID/AI = (2AI - 3AK)/(4AI) = 1 - 3AK/(2AI) = 1 - DH

    18:22
  2.  
 
5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu

24 tháng 5 2021

chỉ đi

24 tháng 5 2021

Nếu hỏi hình học mà bạn vẽ hình ra trước thì sẽ nhiều người giúp hơn đấy :3

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)

mà BD+CD=BC=4cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)