Cho phương trình \(\left(m^2-m\right)x=m^2+3m+2\left(x+1\right)\)vô nghiệm khi m=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
BPT đã cho vô nghiệm khi $(m+2)x^2-(3m+1)x+m+1>0$ với mọi $x\in\mathbb{R}$
Điều này xảy ra khi \(\left\{\begin{matrix} m+2>0\\ \Delta=(3m+1)^2-4(m+2)(m+1)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-2\\ 5m^2-6m-7< 0\end{matrix}\right.\)
\(\Leftrightarrow \frac{3-2\sqrt{11}}{5}< x< \frac{3+2\sqrt{11}}{5}\)
a, Thay vào ta được
\(x^2-8x+10=0\)
\(\Delta'=16-10=6>0\)
Vậy pt luôn có 2 nghiệm pb \(x=4\pm\sqrt{6}\)
b, Ta có \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=-2m+1+3m=m+1\)
Để pt có 2 nghiệm khi m >= -1
Lời giải:
PT $\Leftrightarrow (x+1)^2+|x+1|-(m+1)=0$
$\Leftrightarrow |x+1|^2+|x+1|-(m+1)=0$
Đặt $|x+1|=t(t\geq 0)$ thì: $t^2+t-(m+1)=0(*)$
Với $m=1$ thì $t^2+t-2=0$
$\Leftrightarrow (t-1)(t+2)=0$
Vì $t\geq 0$ nên $t=1\Leftrightarrow |x+1|=1$
$\Leftrightarrow x+1=\pm 1\Leftrightarrow x=0$ hoặc $x=-2$
Để pt vô nghiệm thì $(*)$ chỉ có nghiệm âm hoặc vô nghiệm.
PT $(*)$ chỉ có nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=1+4(m+1)\geq 0\\ S=-1< 0\\ P=-(m+1)<0\end{matrix}\right.\Leftrightarrow m>-1\)
Để $(*)$ vô nghiệm khi $\Delta=4m+5< 0$
$\Leftrightarrow m< \frac{-5}{4}$
Vậy $m>-1$ hoặc $m< \frac{-5}{4}$
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2