K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Bạn tự vẽ hình ra, máy trục trặc nên mình không vẽ được,

Gọi hai góc kề bù là x , y.

Ta có: \(x+y=90^o+90^o=180\)

\(\Rightarrow\frac{1}{2}.x+\frac{1}{2}.y=\frac{1}{2}\left(x+y\right)\)

Mà \(x+y=180^o\)

Vậy \(\frac{1}{2}\left(x+y\right)=\frac{1}{2}.180^o=90^{o^{\left(đpcm\right)}}\)

24 tháng 3 2018

Trả lời

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

~Mik ko biết đúng không?~

12 tháng 4 2017

Gọi hai góc kề bù lần lượt là a và b

Ta có: a+b=180độ

=>1/2a+1/2b = 1/2(a+b) = 90độ

vẽ hình ra là thấy!!!

12 tháng 4 2017

Gọi xOy và yOz là 2 góc kề bù, Ot là p/g xOy; Ot' là p/g yOz

Ta có: yOt = 1/2 xOy (vì Ot là tia p/g xOy) (1)

          yOt' = 1/2 yOz (vì Ot' là tia p/g yOz) (2)

          xOy + yOz = 180 độ ( vì 2 góc kề bù)

Từ (1) và (2) suy ra yOt + yOt' = 1/2(xOy + yOz)

                                             = 1/2.180

                                             = 90 độ

suy ra tOt' = 90 độ

Vậy 2 tia p/g của 2 góc kề bù vuông góc với nhau

Nhớ nha !!!!

12 tháng 3 2019

Gọi \(\widehat{xOz}\), \(\widehat{zOy}\) là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của \(\widehat{xOz}\) , \(\widehat{zOy}\)
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy, nên:
 \(\hept{\begin{cases}\widehat{uOz}=\widehat{xOu}=\frac{\widehat{xOz}}{2}\\\widehat{zOv}=\widehat{yOv}=\frac{\widehat{zOy}}{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\widehat{uOz}=\widehat{xOz}\\2\widehat{zOv}=\widehat{zOy}\end{cases}}\)
Ta lại có:
\(\widehat{xOz}+\widehat{zOy}=180^0\) ( kề bù )
\(\Rightarrow2\widehat{uOz}+2\widehat{zOv}=180^0\)
\(\Rightarrow2\left(\widehat{uOz}+\widehat{zOv}\right)=180^0\)

\(\Rightarrow\left(\widehat{uOz}+\widehat{zOv}\right)=180^0\div2\)

\(\Rightarrow\left(\widehat{uOz}+\widehat{zOv}\right)=90^0\)
\(\Rightarrow\widehat{uOv}=90^0\) (vì 2 góc uOz, góc zOv kề nhau)
\(\Rightarrow\) Tia Ou vuông góc tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

A O E B C D

ta có góc AOE+EOC=180

MÀ BOC=AOB, OED=DOC

vậy BOC+DOE=\(\frac{AOE+EOC}{2}=\frac{180}{2}=90\)

1 tháng 9 2019

góc kề bù = 180o

Tia phân giác của một góc là tia nằm giữa hai cạnh của góc và tạo với hai cạnh ấy hai góc bằng nhau. Định nghĩaTia phân giác của một góc là tia nằm giữa haicạnh của góc và tạo với hai cạnh ấy hai góc bằng nhau.

TU DO SUY RA hai tia phân giác của hai góc kề bù tạo với nhau thành một góc 90o

1 tháng 9 2019

                                                            Bài giải

Hình minh họa a m b n

Gọi 2 góc kề bù đó và các góc được tạo thành bởi các tia phân giác của mỗi góc lần lượt là a ; m và b ; n

Theo như giả thuyết : a và b là hai góc kề bù

                      => a + b = 180o

Và các góc được tạo thành bởi các tia phần giác của chúng là m và n 

=> 2m = a                ;              2n = b

=> 2m + 2n = 1800

   2 ( m + n ) = 1800 

m + n = 1800 : 2 

m + n = 900

Vậy hai tia phân giác của hai góc kề bù tạo với nhau thành một góc 900

a) Do BOC và AOB là 2 góc kề bù 

=> OA ; OC là 2 tia đối nhau

Do AOD và AOB là 2 góc kề bù 

=> OD ; OB là 2 tia đối nhau 

=> BOC và AOD là 2 góc đối đỉnh (dpcm)

b) ?????????????

15 tháng 8 2016

Xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy' 
gọi ot và ot' là hai tia phân giác tương ứng 

Thấy: góc xoy = góc x'oy' 
=> góc yot = góc y'ot' 

Ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o 

<=> góc toy' + góc y'ot' = góc tot' = 180o 

=> ot và ot' là hai tia đối nhau.

15 tháng 8 2016

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

13 tháng 7 2018

O y y x m z n

Ta có: \(\widehat{xOm}=\widehat{mOz}=\frac{\widehat{xOz}}{2}\) (vì Om là tia phân giác của xOz)

\(\widehat{zOn}=\widehat{nOy}=\frac{\widehat{yOz}}{2}\) (vì On là tia phân giác của yOz)

Có: \(\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\frac{\widehat{xOz}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}+\widehat{yOz}}{2}=\frac{180^o}{2}=90^o\)

=> Om _|_ On (đpcm)

mOz=12ˆxOzˆmOz=12^xOz^                                  (1)(1)     (  vì Om là hai tia phân giác của  xOzˆxOz^  )

zOnˆ=12zOyˆzOn^=12zOy^                                   (2)(2)     (  vì On là hai tia phân giác của  zOyˆzOy^  )

Từ  (1)(1)  và  (2)(2)  , ta có :

mOzˆ+zOnˆ=12.(xOzˆ+zOyˆ)mOz^+zOn^=12.(xOz^+zOy^)    (3)(3)

Vì tia  OzOz  nằm giữa hai tia  Om,OnOm,On  và vì  xOzˆxOz^  và  zOyˆzOy^  kề bù (gt)(gt)

Nên  từ  (3)(3)  ⇒mOnˆ=12.1800⇒mOn^=12.1800

Hay  mOnˆ=900

28 tháng 8 2015

B O C A N M

Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC 

Chứng minh góc MON = 90 độ

Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB

Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC 

Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC 

Suy ra : OB nằm giữa hai tia OM và ON nên :

góc MON = góc MOB + góc BON

               = 1/2 * ( góc AOB + góc BOC )

               = 1/2 * 180 độ = 90 độ

31 tháng 3 2018

Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC  Chứng minh góc MON = 90 độ Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC  Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC  Suy ra : OB nằm giữa hai tia OM và ON nên : góc MON = góc MOB + góc BON                = 1/2 * ( góc AOB + góc BOC )                = 1/2 * 180 độ = 90 độ