CMR \(n\inℕ^∗\)thì \(\left(5^{2n+1}+2^{n+4}+2^{n+1}\right)⋮23\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2-2\left(\frac{1}{n}-\frac{1}{n\left(n+1\right)}-\frac{1}{n+1}\right)}\)
=1+1/n-1/n+1
chúc bn hoc tốt
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=\frac{[\left(n+1\right)^2-n]^2}{n^2\left(n+1\right)^2}\)
\(\Rightarrow\left(n+1\right)^4+n^2=\left(n+1\right)^4-2\left(n+1\right)^2n+n^2\)
\(\Rightarrow0=-2\left(n+1\right)^2n\)
\(\Rightarrow\orbr{\begin{cases}\left(n+1\right)^2=0\\n=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=0\end{cases}}\) mà \(n\inℕ^∗\)
=> n\(\in\varnothing\)
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24