K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

ta có:P= x+ x2y -  2x2 -  y (x + y) + 3y +x +2018

Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018

Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018

Suy ra :P=x2(2-2)-y2+3y+x+2018

           P=0-y(-2+3)+x+2018

          

ta có:P= x+ x2y -  2x2 -  y (x + y) + 3y +x +2018

Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018

Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018

Suy ra :P=x2(2-2)-y2+3y+x+2018

           P=0-y(-2+3)+x+2018

           P=0-(-y)+x+2018

            P= y+x+2018

           

ta có:P= x+ x2y -  2x2 -  y (x + y) + 3y +x +2018

Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018

Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018

Suy ra :P=x2(2-2)-y2+3y+x+2018

           P=0-y(-2+3)+x+2018

           P=0-(-y)+x+2018

            

ta có:P= x+ x2y -  2x2 -  y (x + y) + 3y +x +2018

Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018

Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018

Suy ra :P=x2(2-2)-y2+3y+x+2018

           P=0-y(-2+3)+x+2018

           P=0-(-y)+x+2018

            P=y+x+2018

             P=2+2018

            P=2020

Vậy P=2020 do x+y=2

22 tháng 3 2018

Ta có x + y = 2 => x = 2 - y

Thay x = 2 - y vào biểu thức P, ta có:

\(\left(2-y\right)^3+\left(2-y\right)^2y-2\left(2-y\right)-y\left(2-y+y\right)+3y+2-y+2018\)

\(\left(2-y\right)^2\left(2-y+y\right)-4+2y-2y+3y+2-y+2018\)

\(2\left(2-y\right)^2-4+2y+2+2018\)

\(2\left(2-y\right)^2+2016+2y\)

Vậy giá trị của biểu thức P là 2 (2 - y)2 + 2016 + 2y khi x + y = 2.

21 tháng 12 2021

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)

\(\Rightarrow M=0+2019\)

\(\Rightarrow M=2019\)

24 tháng 2 2022

13 tháng 1 2022

M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019

M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019

13 tháng 1 2022

\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)

\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)

\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)

\(M=x^2.0-y.0+0+2019\)

\(M=0-0+0+2019\)

\(M=2019\)

29 tháng 5 2021

\(P=\left[\left(\dfrac{-1}{3}\right)^2x^3+\left(2x^2\right)^2+\dfrac{1}{2}\right]-\left[x\left(\dfrac{1}{3}x\right)^2+\dfrac{3}{2^3}+x^4\right]+\left(y-2013\right)^2=\left(\dfrac{1}{9}x^3+4x^4+\dfrac{1}{2}\right)-\left(\dfrac{1}{9}x^3+x^4+\dfrac{3}{8}\right)+\left(y-2013\right)^2=3x^4+\dfrac{1}{8}+\left(y-2013\right)^2\ge\dfrac{1}{8}\).

Dấu "=" xảy ra khi x = 0; y = 2013.

22 tháng 5 2022

ko trả lời thì thôi đừng nhắn bậy

 

22 tháng 5 2022

đúng ko trả lời cứ nhắn bậy

21 tháng 3 2022

khó quá

gianroi

21 tháng 3 2022

Đề sai r bn, nếu x,y thay đổi thì tổng biểu thức cũng thay đổi

7 tháng 6 2019

NV
25 tháng 12 2020

\(25P=\dfrac{x\left(2+3\right)^2}{2x+x+y+z}+\dfrac{y\left(2+3\right)^2}{2y+x+y+z}+\dfrac{z\left(2+3\right)^2}{2z+x+y+z}\)

\(25P\le x\left(\dfrac{2^2}{2x}+\dfrac{3^2}{x+y+z}\right)+y\left(\dfrac{2^2}{2y}+\dfrac{3^2}{x+y+z}\right)+z\left(\dfrac{2^2}{2z}+\dfrac{3^2}{x+y+z}\right)\)

\(25P\le6+\dfrac{9\left(x+y+z\right)}{x+y+z}=15\)

\(\Rightarrow P\le\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(x=y=z\)

DD
20 tháng 5 2022

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x+2019\)

\(=x^3+x^2\left(2-x\right)-2x^2-y\left(x+y\right)+3y+x+2019\)

\(=x^3+2x^2-x^3-2x^2-2y+3y+x+2019\)

\(=x+y+2019=2021\)

21 tháng 5 2022

1q