Tính giá trị biểu thức:
P= x3 + x2y - 2x2 - y (x + y) + 3y +x +2018 với x+y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
\(P=\left[\left(\dfrac{-1}{3}\right)^2x^3+\left(2x^2\right)^2+\dfrac{1}{2}\right]-\left[x\left(\dfrac{1}{3}x\right)^2+\dfrac{3}{2^3}+x^4\right]+\left(y-2013\right)^2=\left(\dfrac{1}{9}x^3+4x^4+\dfrac{1}{2}\right)-\left(\dfrac{1}{9}x^3+x^4+\dfrac{3}{8}\right)+\left(y-2013\right)^2=3x^4+\dfrac{1}{8}+\left(y-2013\right)^2\ge\dfrac{1}{8}\).
Dấu "=" xảy ra khi x = 0; y = 2013.
\(25P=\dfrac{x\left(2+3\right)^2}{2x+x+y+z}+\dfrac{y\left(2+3\right)^2}{2y+x+y+z}+\dfrac{z\left(2+3\right)^2}{2z+x+y+z}\)
\(25P\le x\left(\dfrac{2^2}{2x}+\dfrac{3^2}{x+y+z}\right)+y\left(\dfrac{2^2}{2y}+\dfrac{3^2}{x+y+z}\right)+z\left(\dfrac{2^2}{2z}+\dfrac{3^2}{x+y+z}\right)\)
\(25P\le6+\dfrac{9\left(x+y+z\right)}{x+y+z}=15\)
\(\Rightarrow P\le\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(x=y=z\)
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x+2019\)
\(=x^3+x^2\left(2-x\right)-2x^2-y\left(x+y\right)+3y+x+2019\)
\(=x^3+2x^2-x^3-2x^2-2y+3y+x+2019\)
\(=x+y+2019=2021\)
ta có:P= x3 + x2y - 2x2 - y (x + y) + 3y +x +2018
Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018
Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018
Suy ra :P=x2(2-2)-y2+3y+x+2018
P=0-y(-2+3)+x+2018
ta có:P= x3 + x2y - 2x2 - y (x + y) + 3y +x +2018
Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018
Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018
Suy ra :P=x2(2-2)-y2+3y+x+2018
P=0-y(-2+3)+x+2018
P=0-(-y)+x+2018
P= y+x+2018
ta có:P= x3 + x2y - 2x2 - y (x + y) + 3y +x +2018
Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018
Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018
Suy ra :P=x2(2-2)-y2+3y+x+2018
P=0-y(-2+3)+x+2018
P=0-(-y)+x+2018
ta có:P= x3 + x2y - 2x2 - y (x + y) + 3y +x +2018
Suy ra P= x2(x+y-2)-y(x+y)+3y+x+2018
Thay x+y=2 Vào biểu thức P= x2(x+y-2)-y(x+y)+3y+x+2018
Suy ra :P=x2(2-2)-y2+3y+x+2018
P=0-y(-2+3)+x+2018
P=0-(-y)+x+2018
P=y+x+2018
P=2+2018
P=2020
Vậy P=2020 do x+y=2
Ta có x + y = 2 => x = 2 - y
Thay x = 2 - y vào biểu thức P, ta có:
\(\left(2-y\right)^3+\left(2-y\right)^2y-2\left(2-y\right)-y\left(2-y+y\right)+3y+2-y+2018\)
= \(\left(2-y\right)^2\left(2-y+y\right)-4+2y-2y+3y+2-y+2018\)
= \(2\left(2-y\right)^2-4+2y+2+2018\)
= \(2\left(2-y\right)^2+2016+2y\)
Vậy giá trị của biểu thức P là 2 (2 - y)2 + 2016 + 2y khi x + y = 2.