cho hình thang abcd (ab // cd) có BC<AD gọi I là giao điểm của AB và CD , O là giao điểm hai đường chéo AC và BD . Chứng minh đường thẳng OI đi qua trung điểm của AD và BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Kẻ BH ^ CD tại H Þ BH = B C 2 = 4cm.
Tính được SABCD = 22cm2
Kẻ AH ⊥ DC tại H ; BK ⊥ DC tại K.
=> AH // BK
Xét t/g AHD vuông tại H và t/g BKC vuông tại K có:
AD = BC (do ABCD là htc)
\(\widehat{D}=\widehat{C}\)(do ABCD là htc)
=> t/g AHD = t/g BKC (ch-gn)
=> HD = KC ; AH = KB
Mà AH // BK
=> AHKB là hình thang
Lại có \(\widehat{AHK}=90^o\)
=> AHKB là hình chữ nhật
=> HK = AB = 10cm
Có
DH+HK+KC = DC
=> 2CK + 10 = 16 (cm)
=> CK = 3 (cm) Áp dụng đ/l Pythagoras vào t/g BKC vuông tại K có
\(BK^2+CK^2=BC^2\)
=> \(BK^2+3^2=5^2\)
=> BK = 4 (cm)
Có
\(S_{ABCD}=\dfrac{1}{2}.BK.\left(AB+CD\right)\)
\(=\dfrac{1}{2}.4.\left(10+16\right)=2.26=52\)cm2
Không chắc lắm :((