K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

=  \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)

4 tháng 12 2018

tui mới học lớp 6 thui

3 tháng 4 2015

  ta chuyển đề bài vế trái thành:

  (1+1/2+1/3+1/4+...+1/2001+1/2002) - 2(1/2+1/4+1/6+...+1/2002)

=(1+1/2+1/3+....+1/2002) - (1+1/2+1/3+1/4+...+1/1001)

=1/1002+1/1003+...+1/2002

=> điều phải chứng minh

 

28 tháng 10 2019

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

11 tháng 1 2020

Ta có \(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+...\frac{1}{2002}=VP\)

Vậy...

10 tháng 11 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)

\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)

26 tháng 1 2017

1)\(\frac{-8}{5}+\frac{207207}{201201}\)

=\(\frac{-8}{5}+\frac{207}{201}\)

=\(\frac{-8}{5}+\frac{69}{67}\)

=\(\frac{-191}{335}\)

30 tháng 1 2017

giúp mk bài 2 luôn đi

17 tháng 2 2020

\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)

\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)=4-4=0\)

\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}=0\)

\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x-2000=0\)  ( do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) )

\(\Leftrightarrow x=2000\)

Vậy x = 2000

Đây là cách của lớp 7 nha

@@ Học tốt

17 tháng 2 2020

\(\frac{x}{2000}\)- 1+\(\frac{x+1}{2001}\)-1+\(\frac{x+2}{2002}\)-1+\(\frac{x+3}{2003}\)-1=0

<=>\(\frac{x-2000}{2000}\)\(\frac{x-2000}{2001}\)\(\frac{x-2000}{2002}\)\(\frac{x-2000}{2003}\)=0

<=>\(\left(x-2000\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)=0

Do \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)khác 0

=> \(x-2000=0\)<=> \(x=2000\)