K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

hình bạn tự vẽ nha

a)Xét tam giác BED và tam giác BEC có

BD=BC(giả thiết)

góc DBE= góc CBE(giả thiết)

cạnh BE chung

=>tam giác BED=tam giác BEC(c.g.c)(đpcm)

b)xét tam giác BKD và tam giác BKC có

BD=BC(giả thiết)

góc DBK= góc CBK(giả thiết)

Cạnh BK chung

=>tam giác BKD= tam giác BKC(c.g.c)

=>DK=CK(2 cạnh tương ứng)

Do đó tam giác CKD cân tại K

c)vì tam giác BED= tam giác BEC(theo phần a)

=>DE=CE(2 cạnh tương ứng)

Vì tam giác CKD cân tại K

=>góc KDE= góc KCE

xét tam giác KED và tam giác KEC có

KC=KD(theo phần b0

Góc KDE=góc KCE(chứng minh trên)

CE=DE(chứng minh trên)

=>tam giác KED = tam giác KEC (c.g.c)

góc KED=góc KEC(2 góc tương ứng)

mà 2 góc này kề bù

=>góc KED=góc KEC=180 độ : 2=90 độ

vì AH // BE

=>góc AHE= góc BEH

mà 2 góc này ở vị trí trong cùng phía

=>góc AHE+ góc BEH=180 độ

=>góc AHE= góc BEH=180 độ :2=90 độ

do đó AH vuông góc với DC

a: Xét tứ giác AFBC có 

E là trung điểm của BA

E là trung điểm của CF
Do đó: AFBC là hình bình hành

Suy ra: BF//AC

b: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

c: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

Ta có: AFBC là hình bình hành

nên AF//BC

=>AF\(\perp\)AK

hay ΔFAK vuông tại A

Trên tia AM lấy I sao cho AM = MI => AI = 8 cm

Ta có tứ giác ABIC có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên ABIC là hình bình hành

=> AB = IC = 6 cm. Xét tam giác ACI có AC^2 = AI2 + CI2

Nên tam giác ACI vuông tại I. Ta có S(ABIC) = 2 S(AIC) = AI . CI = 48 (cm2)

suy ra S(ABC) = 1/2 S(ABIC) = 24 (cm2)

24 tháng 2 2018

c, Xét \(\Delta\)IEB và \(\Delta\)CAB có :

góc E = góc A (= 90o)

góc B - chung

AB = EB ( theo câu b)

=> hai tam giác trên bằng nhau (g.c.g) => IB=IC (cặp cạnh tương ứng)=> tam giác BIC cân tại B (đpcm)

25 tháng 2 2018

d,Từ câu a, ta có: AB=BE => tam giác ABE cân tại B => góc BEA = góc BAE ( hai góc ở đáy) 

                                                                                    => góc B = 180o -  ( góc AEB + góc EAB ) = 180o -    2 góc BEA (1)

    Từ câu b, ta có: tam giác BIC cân tại B => góc I = góc C ( hai góc ở đáy)

                                                                   => góc B = 180o - ( góc I + góc C ) = 180o - 2 góc BCI (2)

Từ 1 và 2, ta được: góc BEA = góc BCI

mà hai góc này ở vị trí đồng vị => AE//IC (đpcm)

15 tháng 5 2018

a)vì tam giác ABC cân tại A

=>AB=AC và góc ABC=góc ACB

xét tam giác ABM và tam giác ACM có

góc AMB=góc AMC(= 90 độ)

AB=AC

góc ABM=góc ACM

=>tam giác ABM = tam giác ACM (c/h-g/n)

=>MB=MC(2 cạnh tương ứng)

b)ta có BC=24

mà MB=MC

=>M là trung điểm của BC

=>BM=MC=24/2=12 cm

xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:

\(AB^2=AM^2+BM^2\)

\(AM^2=AB^2-BM^2\)

\(AM^2=20^2-12^2\)

\(AM^2=400-144\)

AM^2=256

=>AM=16 cm

c)vì tam giác ABM = tam giác ACM(cmt)

=>góc BAM=góc CAM(2 góc tương ứng)

xét tam giác HAM và tam giác KAM có

góc AHM = góc AKM(= 90 độ)

cạnh AM chung

góc BAM=góc CAM

=>tam giác HAM = tam giác KAM(c/h-g/n)

=>AH=AK(2 cạnh tương ứng)

=>tam giác AHK cân tại A

d)mình không biết làm phàn này nha