Cho tam giác ABC. Các điểm M, N di động trên cạnh AB sao cho AD=BM. Qua D và M vẻ các đường thẳng song song với BC cắt cạnh AC theo thứ tự ở E và N. Chứng minh DE+MN không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Kẻ NF // AB
=> góc NMF = MFB (SLT); góc NFM = FMB (SLT) mà cạnh chung MF
=> Tam giác MNF và tam giác FBM (g- c- g)
=> MN = BF và BM = NF => BM = NF = AD
+) Chứng minh được: tam giác ADE = NFC (g- c- g) => DE = FC
=> DE + MN = FC + BF = BC = không đổi
Vậy...
Do DE // BC
\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{AD}{AB}\)(Hệ quả Ta lét)
Mà AD=BM (gt)
Suy ra : \(\frac{AD}{AB}\)=\(\frac{BM}{AB}\)
\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{BM}{AB}\)
\(\Rightarrow\)DE=\(\frac{BC.BM}{AB}\)
Xét \(\Delta ABC\)có MN//BC
\(\frac{MN}{BC}\)=\(\frac{AM}{AB}\)(Hệ quả Talét)
\(\Rightarrow\)MN=\(\frac{BC.AM}{AB}\)
Suy ra DE+MN=\(\frac{BC.BM}{AB}\)+ \(\frac{BC.AM}{AB}\)
\(\Rightarrow\)DE+MN=\(\frac{BC.AB}{AB}\)= BC
Mà BC là đường cố định không đổi
\(\Rightarrow\)DE+MN không đổi
Từ N kẻ đường thẳng song song vói AB cắt BC tại K. Nối EK.
Xét ΔBEK và Δ NKE, ta có:
∠(EKB) =∠(KEN) (so le trong vì EN // BC)
EK cạnh chung
∠(BEK) =∠(NKE) (so le trong vì NK // AB))
Suy ra: Δ BEK = Δ NKE(g.c.g)
Suy ra: BE = NK (hai cạnh tương ứng)
EN = BK (hai cạnh tương ứng)
Xét Δ ADM và Δ NKC, ta có:
∠A =∠(KNC) (đồng vị vì NK // AB)
AD = NK ( vì cùng bằng BE)
∠(ADM) =∠(NKC) (vì cùng bằng góc B)
Suy ra: Δ ADM = Δ NKC(g.c.g)
Suy ra: DM = KC (hai cạnh tương ứng)
Mà BC = BK + KC. Suy ra: BC = EN + DM
qua N kẻ đường thẳng song song với AB cắt BC tại K .
Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)
nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC
Suy ra DM+EN=BK+CK=BC(dpcm)