CMR \(\frac{a}{b}\)< 1 \(\Rightarrow\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
jup mik vs mik đang cần gấp lém
Ai nhăn mừn tít cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ( đpcm )
\(\frac{a}{b}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2\)\(=\frac{a^2+b^2}{b^2+d^2}\)\(\)
Ta có: \(\frac{a^2+b^2}{b^2+d^2}\)\(=\left(\frac{a}{b}\right)^2\)
\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
CMR:a2+b2/c2+d2=ab/cd=>a/b=c/d
Bài làm
a2+b2/c2+d2=ab/cd
=>(a2+b2)cd=>ab(c2+d2)
<=>a2(cd)+b2(cd)-abc2-abc2=0
<=>a2cd-abc2+b2cd-abc2=0
<=>ac(ad-bc)+bd(bc-ad)=0
<=>ac(ad-bc)-bd(bc-ad)=0
<=>(ac-bd)(ac-bd)=0
=>\(\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\)
=>\(\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\)
=>\(\orbr{\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}}\)=>ĐPCM
Từ \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Xét VT \(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
Xét VP \(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Đề j đây
Còn nha. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}^{\left(1\right)}\)
Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}^{\left(2\right)}\)
Từ (1) và (2) => đpcm
a)
(1) \(2SO_2+O_2\xrightarrow[V_2O_5]{t^o}2SO_3\)
(2) \(SO_3+H_2O\rightarrow H_2SO_4\)
(3) \(Na_2SO_3+H_2SO_4\rightarrow Na_2SO_4+SO_2+H_2O\)
(4) \(SO_2+2KOH\rightarrow K_2SO_3+H_2O\)
(5) \(K_2SO_3+H_2SO_4\rightarrow K_2SO_4+SO_2+H_2O\)
b)
\(SO_3+2NaOH\rightarrow Na_2SO_4+H_2O\)
Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
\(\Leftrightarrow\)\(\frac{a}{b}< 1\) ( đpcm )
Và trường hợp này chỉ xảy ra khi \(\frac{a}{b}< 1\) và \(a,b,c\inℕ^∗\)
Chúc bạn học tốt ~
Theo đề bài ta có:
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Rightarrow ab+ac< ab+bc\)
\(\Rightarrow ac< bc\)
\(\Rightarrow a< b\)
Vậy nếu \(\frac{a}{b}< 1\)thì \(\frac{a}{b}< \frac{a+c}{b+c}\)( ĐPCM )
P/s: ĐPCM: Điều phải chứng minh