K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng TC DTSBN ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ( đpcm )

16 tháng 7 2017

\(\frac{a}{b}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2\)\(=\frac{a^2+b^2}{b^2+d^2}\)\(\)

Ta có: \(\frac{a^2+b^2}{b^2+d^2}\)\(=\left(\frac{a}{b}\right)^2\)

\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)

17 tháng 8 2019

CMR:a2+b2/c2+d2=ab/cd=>a/b=c/d

Bài làm

a2+b2/c2+d2=ab/cd

=>(a2+b2)cd=>ab(c2+d2)

<=>a2(cd)+b2(cd)-abc2-abc2=0

<=>a2cd-abc2+b2cd-abc2=0

<=>ac(ad-bc)+bd(bc-ad)=0

<=>ac(ad-bc)-bd(bc-ad)=0

<=>(ac-bd)(ac-bd)=0

=>\(\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\)

=>\(\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\)

=>\(\orbr{\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}}\)=>ĐPCM

17 tháng 8 2019

Từ \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Vậy    \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

12 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

Xét VP \(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

Đề j đây

3 tháng 10 2015

Còn nha. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}^{\left(1\right)}\)

Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}^{\left(2\right)}\)

Từ (1) và (2) => đpcm

a)

(1) \(2SO_2+O_2\xrightarrow[V_2O_5]{t^o}2SO_3\)

(2) \(SO_3+H_2O\rightarrow H_2SO_4\)

(3) \(Na_2SO_3+H_2SO_4\rightarrow Na_2SO_4+SO_2+H_2O\)

(4) \(SO_2+2KOH\rightarrow K_2SO_3+H_2O\)

(5) \(K_2SO_3+H_2SO_4\rightarrow K_2SO_4+SO_2+H_2O\)

b)

\(SO_3+2NaOH\rightarrow Na_2SO_4+H_2O\)

21 tháng 3 2018

Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

\(\Leftrightarrow\)\(\frac{a}{b}< 1\) ( đpcm ) 

Và trường hợp này chỉ xảy ra khi \(\frac{a}{b}< 1\) và \(a,b,c\inℕ^∗\)

Chúc bạn học tốt ~ 

21 tháng 3 2018

Theo đề bài ta có:

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Rightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Rightarrow ab+ac< ab+bc\)

\(\Rightarrow ac< bc\)

\(\Rightarrow a< b\)

Vậy nếu \(\frac{a}{b}< 1\)thì \(\frac{a}{b}< \frac{a+c}{b+c}\)( ĐPCM )

P/s: ĐPCM: Điều phải chứng minh