Cho tam giác ABC nhọn nội tiếp (O) (AB<AC), 2 đường cao BE và CF cắt nhau tại H. Tia BE cắt (O) tại M (M khác B) , tia CF cắt (O) tại N (N khác C).
a) chứng minh CM=CH
b) MN cắt AB và AC lần lượt tại P và Q. gọi R là giao điểm của MN và BC. chứng minh RN . RM = RP . RQ
c) Tia AH cắt BC tại D, gọi K là trung điểm của AC. chứng minh: KEFD nội tiếp
d) đường tròn ngoại tiếp tam giác BDF cắt (O) tại T (T khác B). chứng minh H, K, T thẳng hàng.