K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Cho mình lời giải đầy đủ nhé! * xin lỗi mấy bạn do lỗi phông*

Ta có :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(..............\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\left(1\right)\)

Lại có :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(...............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)

Từ (1) và (2) => Điều phải chứng minh

3 tháng 4 2016

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

3 tháng 4 2016

cảm ơn bạn nha

6 tháng 4 2015

Ta có:

\(\frac{1}{5^2}

6 tháng 4 2015

thuỳ dung đúng đấy

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời