Cho (O;R) và một cát tuyến d không đi qua tâm O. Từ một điểm M trên d và ở ngoài (O) ta kẻ hai tiếp tuyến MA và MB với đường tròn; BO kéo dài cắt (O) tại điểm thứ hai là C. Gọi H là chân đường vuông góc hạ từ O xuống d. Đường thẳng vuông góc với BC tại O cắt AM tại D.
1. CM: A;O;H;M;B cùng nằm trên 1 đường tròn.
2. CM: AC song song MO và MD=OD
3. Đường thẳng OM cắt (O) tại E và F . Chứng tỏ MA^2 = ME.MF
4. Xác định vị trí của điểm M trên d để tam giác MAB là tam giác đều. Tính diện tích phần tạo bởi hai tiếp tuyến với đường tròn trong trường hợp này.