K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

bt đc chết liền

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

17 tháng 11 2017

Các giải của các bài toán này là sử dụng tổng các delta em nhé

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
19 tháng 1 2019

c và d là nghiệm của phương trình:

  x 2 + a x + b ⇒ ⇒ c + d = − a     ( 1 ) c d = b          ( 2 )

a, b là nghiệm của phương trình:

  x 2 + c x + d = 0 ⇒ ⇒ a + b = − c      ( 3 ) a b = d         ( 4 )

Đáp án cần chọn là: A

Câu 3:  Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:A.  x1 = -1 và x2 = -2/2013     B. x1 = 1 và  x2 = 2/2013C. Phương trình vô nghiệm     D. Cả ba đáp án trên đều sai.Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng         A. 3                                  B. - 3                  C. 1                                   D. -1       Câu 5:  Phương trình nào sau đây vô nghiệm:           A.  4x2 -  5x + 1 = 0     B.  2x2 + x – 1 = 0    ...
Đọc tiếp

Câu 3:  Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:

A.  x1 = -1 và x2 = -2/2013     B. x1 = 1 và  x2 = 2/2013

C. Phương trình vô nghiệm     D. Cả ba đáp án trên đều sai.

Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng

         A. 3                                  B. - 3                  C. 1                                   D. -1       

Câu 5:  Phương trình nào sau đây vô nghiệm:          

 A.  4x2 -  5x + 1 = 0     B.  2x2 + x – 1 = 0     C.  3x2 + x + 2 = 0    D. x2 + x – 1 = 0

Câu 6:  Phương trình x2 - 7x + 6 = 0,khi đó tích các nghiệm bằng

               A.  -7              B.  6                         C. - 6                                D. 7

5
AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Câu 3:

$\Delta=2015^2-4.2013.2=2011^2$

Do đó pt có 2 nghiệm:

$x_1=\frac{2015+2011}{2.2013}=1$

$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$

Đáp án B.

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Câu 4:

Theo định lý Viet, tổng các nghiệm của pt là:

$S=\frac{-b}{a}=\frac{-3}{1}=-3$

Đáp án B.

2 tháng 4 2022

Câu 1 : A

Câu 2 : D

9 tháng 7 2019

Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

8 tháng 5 2017

Không gian mẫu khi gieo con súc sắc cân đối và đồng chất:

Ω = {1, 2, 3, 4, 5, 6}

⇒ n(Ω) = 6

Đặt A: "con súc sắc xuất hiện mặt b chấm";

Xét : x2 + bx + 2 = 0 (1)

Δ = b2 – 8

a. Phương trình (1) có nghiệm

⇔ Δ ≥ 0 ⇔ b ≥ 2√2

⇒ b ∈ {3; 4; 5; 6}.

⇒ A = {3, 4, 5, 6}

⇒ n(A) = 4

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

b. (1) vô nghiệm

⇔ Δ < 0 ⇔ b ≤ 2√2

⇒ b ∈ {1; 2}

⇒ A = {1, 2}

⇒ n(A) = 2

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

c. phương trình (1) có nghiệm

⇔ b ∈ {3; 4; 5; 6}.

Thử các giá trị của b ta thấy chỉ có b = 3 phương trình cho nghiệm nguyên.

⇒ A = {3}

⇒ n(A) = 1

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11