CMR :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(S=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow\left(S-P\right)^{2016}=\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{1009}-...-\frac{1}{2015}\right)^{2016}=0^{2016}=0\)
Ta thấy:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)+\frac{1}{2015}\)
\(S=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\) nên:
\(S=P\)\(\Rightarrow S-P=0\)\(\Rightarrow\left(S-P\right)^{2016}=0\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\)
\(B=\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)
\(=\frac{1}{3022}\left(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+...+\frac{3022}{2014.1008}\right)\)
\(=\frac{1}{3022}\left(\frac{1008}{1008.2014}+\frac{2014}{1008.2014}+...+\frac{2014}{1008.2014}+\frac{1008}{1008.2014}\right)\)
\(=\frac{1}{3022}\left(\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+...+\frac{1}{2014}+\frac{1}{1008}\right)\)
\(=\frac{2}{3022}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)
\(=\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)
=> \(\frac{A}{B}=\frac{\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}}{\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)
Vậy....
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-1-\frac{1}{2}-...-\frac{1}{1007}\)
\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\) (đpcm)