Cho f(x) = (x+2)(x+3)(x+4)(x+5) + 1. CMR f(x) luôn có giá trị chính phương với mọi x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
f(x)=ax2+bx+cf(x)=ax2+bx+c
f(0)=a.02+b.0+c=cf(0)=a.02+b.0+c=c
⇒⇒ c là số nguyên
f(1)=a.12+b.1+c=a+b+cf(1)=a.12+b.1+c=a+b+c
Vì c là số nguyên nên a + b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+cf(2)=a.22+b.2+c=2(2a+b)+c
Vì c là số nguyên nên 2(2a + b) là số nguyên
⇒⇒ 2a + b là số nguyên (2)
Từ (1) và (2) ⇒⇒ (2a + b) - (a + b) là số nguyên ⇒⇒ a là số nguyên
⇒⇒ b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên.
#ks+Kbn= Add
#Uyên_Ami_BTS >,<
#Taehyung_stan
Ta có f(0) = a.02 + b.0+c =c
=> c là số nguyên
f(1) = a.12+ b.1+c=a +b + c = (a+)b+c
Vi c là số nguyên nên a+b là số nguyên (1)
f(2) = a.22+ b.2+c=2(2a+b)+c
=> 2(2a+b) là số nguyên
=>2a +b là số nguyên (2)
Từ (1) và (2)
=>(2a +b)-(à+b) là số nguyên => a là số nguyên =>b là số nguyên
=>f(x) luôn nhận giá trị nguyên với mọi x nguyên.
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(0\right)=a0^2+0b+c\in Z\)
\(\Rightarrow c\in Z\)
\(f\left(1\right)=a1^2+1b+c=a+b+c\in Z\)
Mà \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)
\(f\left(2\right)=a2^2+2b+c=4a+2b+c=2\left(2a+b\right)+c\in Z\)
Vì \(c\in Z\Rightarrow2\left(2a+b\right)\in Z\)
\(\Rightarrow2a+b\in Z\left(2\right)\)
Từ (1) và (2) suy ra: \(\left(2a+b\right)-\left(a+b\right)\in Z\)
\(\Rightarrow2a+b-a-b\in Z\)
\(\Rightarrow a\in Z\)
Từ (1) suy ra \(b\in Z\)
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên
có gì ko hiểu thì cứ hỏi tự nhiên ạ~
\(f\left(x\right)=ax^2+bx+c\left(1\right)\)
\(\Rightarrow f\left(0\right)=c\in Z\)( vì \(f\left(0\right)\in Z\))
\(\Rightarrow f\left(1\right)=a+b+c\left(4\right)\)Mà \(f\left(1\right)\in Z\)
\(\Rightarrow a+b+c\in Z\)mà \(c\in Z\)
\(\Rightarrow a+b\in Z\Rightarrow2a+2b\in Z\left(2\right)\)
Từ (1) \(\Rightarrow f\left(2\right)=4a+2b+c\in Z\)(vì \(f\left(2\right)\in Z\))
Mà \(c\in Z\)
\(\Rightarrow4a+2b\in Z\left(3\right)\)
Từ (2) và (3)\(\Rightarrow2a\in Z\Rightarrow a\in Z\)
Từ (4) kết hợp a,c \(\in Z\Rightarrow b\in Z\)
\(\Rightarrow f\left(x\right)\)luôn nhân giá trị nguyên với mọi x nguyên
\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)
\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)
\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)
ƒ (x)=(x+2)(x+3)(x+4)(x+5)+1
ƒ (x)=(x+2)(x+5)(x+3)(x+4)+1
ƒ (x)=(x2+5x+2x+10)(x2+4x+3x+12)+1
ƒ (x)=(x2+7x+10)(x2+7x+12)+1
ƒ (x)=(x2+7x+11−1)(x2+7x+11+1)+1
ƒ (x)=(x2+7x+11)2−1+1
ƒ (x)=(x2+7x+11)2⇔đpcm