K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

thằng ngu lê anh tú ko biết gì thì im vào

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)\(\Rightarrow x^2+y^2=S^2-2P\)

Ta cần chứng minh \(S^2-2P+\left(\frac{P+1}{S}\right)^2\ge2\)

\(\Leftrightarrow S^2-2\left(P+1\right)+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow S^2-\frac{2S\left(P+1\right)}{S}+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow\left(S-\frac{P+1}{S}\right)^2\ge0\) *luôn đúng*

10 tháng 3 2018

Đề sai. a=0;b=0,1 ko đúng, sửa lại đề đi bn

NV
8 tháng 7 2021

Bài này hôm trước hình như bạn mới hỏi xong, vậy làm chi tiết cho đỡ băn khoăn:

Với các số dương a;b;c;x;y;z bất kì, ta chứng minh BĐT sau:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, BĐT tương đương:

\(a^2+b^2+x^2+y^2+2\sqrt{a^2b^2+x^2y^2+x^2b^2+a^2y^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Từ đó suy ra:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)

Áp dụng cho bài toán:

\(VT=\sqrt{\left(x+\dfrac{y}{2}\right)^2+\left(\dfrac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\dfrac{z}{2}\right)^2+\left(\dfrac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\dfrac{x}{2}\right)^2+\left(\dfrac{\sqrt{3}x}{2}\right)^2}\)

\(VT\ge\sqrt{\left(x+\dfrac{y}{2}+y+\dfrac{z}{2}+z+\dfrac{x}{2}\right)^2+\left(\dfrac{\sqrt{3}y}{2}+\dfrac{\sqrt{3}z}{2}+\dfrac{\sqrt{3}x}{2}\right)^2}=2\left(x+y+z\right)\) (đpcm)

NV
7 tháng 7 2021

\(\Leftrightarrow\sqrt{4x^2+4xy+8y^2}+\sqrt{4y^2+4yz+8z^2}+\sqrt{4z^2+4zx+8x^2}\ge4\left(x+y+z\right)\)

Ta có:

\(VT=\sqrt{\left(2x+y\right)^2+\left(\sqrt{7}y\right)^2}+\sqrt{\left(2y+z\right)^2+\left(\sqrt{7}z\right)^2}+\sqrt{\left(2z+x\right)^2+\left(\sqrt{7}x\right)^2}\)

\(VT\ge\sqrt{\left(2x+y+2y+z+2z+x\right)^2+\left(\sqrt{7}x+\sqrt{7}y+\sqrt{7}z\right)^2}\)

\(VT\ge\sqrt{16\left(x+y+z\right)^2}=4\left(x+y+z\right)\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

NV
7 tháng 7 2021

BĐT Mincopxki:

\(\sqrt{x^2+a^2}+\sqrt{y^2+b^2}+\sqrt{z^2+c^2}\ge\sqrt{\left(x+y+z\right)^2+\left(a+b+c\right)^2}\)

3 tháng 6 2021

\(\dfrac{x^2+y^2}{a^2+b^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\)

\(\Leftrightarrow\dfrac{x^2+y^2}{a^2+b^2}=\dfrac{x^2b^2+a^2y^2}{a^2b^2}\)

\(\Leftrightarrow\left(x^2+y^2\right)a^2b^2=\left(a^2+b^2\right)\left(x^2b^2+a^2y^2\right)\)

\(\Leftrightarrow a^2b^2x^2+a^2b^2y^2=a^2x^2b^2+a^4y^2+b^4x^2+a^2y^2b^2\)

\(\Leftrightarrow0=a^4y^2+b^4x^2\)

Có \(\left\{{}\begin{matrix}a^4y^2\ge0\\b^4x^2\ge0\end{matrix}\right.\) =>\(a^4y^2+b^4x^2\ge0\)

 [=] xảy ra <=> \(\left\{{}\begin{matrix}a^4y^2=0\\b^4x^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) (vì a;b khác 0)

Vậy y=x=0 (đpcm)

30 tháng 5 2021

Đặt biểu thức trên là A

\(A=x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\)

\(=\left(x-y\right)^2+\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}+2xy\ge2\sqrt{\left(x-y\right)^2\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}}+2xy\)

\(=2\sqrt{\left(xy-1\right)^2}+2xy\)

\(=2\left|xy-1\right|+2xy\)

Áp dụng bđt Cô si 

- Nếu thấy \(xy\ge1\Rightarrow A\ge2xy-2+2xy=4xy-2\ge2\)

- Nếu \(xy< 1\Rightarrow A>-2xy+2+2xy=2\)

Vậy : \(A\ge2\left(đpcm\right)\)

Ta có:Xét hiệu \(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2-2=\left(x-y\right)^2+\left(\frac{xy-1}{x-y}\right)^2+2\left(xy-1\right)\ge0\)

\(=\left(x-y+\frac{xy-1}{x-y}\right)^2\ge0\)

\(\Rightarrow x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\left(đpcm\right)\)

28 tháng 4 2017

y=1

x=2

28 tháng 4 2017

bạn giải thích rõ ra đi