Tìm x nguyên để biểu thức A có giá trị nguyên :
A=x-2/2x-7
Giúp mình nhanh nha mọi người 😘😘😘😘😘
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4-x^2+2x+2020\)
\(A=\left(x^4-2x^2+1\right)+\left(x^2+2x+1\right)+2018\)
\(A=\left(x^2-1\right)^2+\left(x+1\right)^2+2018\)
\(A=\left(x-1\right)^2\left(x+1\right)^2+\left(x+1\right)^2+2018\)
\(A=\left(x+1\right)^2\left[\left(x-1\right)^2+1\right]+2018\)
Vì \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left[\left(x-1\right)^2+1\right]>0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2\left[\left(x-1\right)^2+1\right]\ge0\)
\(\Rightarrow\left(x+1\right)^2\left[\left(x-1\right)^2+1\right]+2018\ge2018\)
\(\Rightarrow Amin=2018\Leftrightarrow\left(x+1\right)^2\left[\left(x-1\right)^2+1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\\left(x-1\right)^2+1=0\end{matrix}\right.\)
Mà \(\left(x-1\right)^2+1>0\) với mọi x
=> \(\left(x-1\right)^2+1\) vô nghiệm
\(\Rightarrow\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTNN của A là 2018 khi x = -1
Vậy GTNN của A là 2018 khi x
a)(x - 1) x + 2 = (x - 1)x + 4
=> (x - 1) x + 4 - (x - 1)x + 2 = 0
=> (x - 1)x + 2 . [(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0^{x+2}\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0
=> x = 1
Nếu x - 1 = - 1
=> x = 0
Nếu x - 1 = 1
=> x = 2
Vậy \(x\in\left\{0;1;2\right\}\)
b) \(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\)
\(\Rightarrow1,78^{2x-2}:1,78^x-1,78^x:1,78^x=0\)
\(\Rightarrow1,78^{x-2}-1=0\)
\(\Rightarrow1,78^{x-2}=1\)
\(\Rightarrow1,78^{x-2}=1,78^0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
Vậy x = 2
Viết dưới dạng phân số, ta được \(\frac{35,5}{x}-\frac{2,5}{x}=15\)
\(\frac{35,5-2,5}{x}=15\)
\(\frac{33}{x}=15\)
\(35:x=15\)
\(x=35:15=\frac{35}{15}=\frac{7}{3}\)
TL:
-Quá khứ của buy là bought.
-Phân từ quá khứ của buy cũng là bought.
học tốt
a: \(A=M-N+P\)
\(=-2x^2+xy^2+3x-3x^3+2xy^2-4x+5x^3-3xy^2-x^2+2x-1\)
\(=\left(-2x^2-x^2\right)+\left(5x^3-3x^3\right)+\left(xy^2+2xy^2-3xy^2\right)+\left(3x-4x+2x\right)-1\)
\(=+2x^3-3x^2+x-1\)
b: Bạn xem lại đề, biểu thức này không có giá trị lớn nhất
Bạn ơi mình gửi rồi nhưng đợi 3 phút chưa được ạ , bạn có thể lên google nhé