K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

A B C D E F H P K I G M O

c) Gọi K là giao điểm của EF và AH, I và G lần lượt là trung điểm của EF và AH.

Ta thấy \(\left(DKHA\right)=-1\),G là trung điểm của HA => \(DK.DG=DH.DA=DB.DC\)

=> K là trực tâm của \(\Delta\)BGC => CK vuông góc BG

Vì CK vuông góc BG, BH vuông góc AC nên \(\widehat{ACK}=\widehat{HBG}\)(1)

Ta có \(\widehat{AEF}=\widehat{ABC}=\widehat{APC}\)=> (P,K,E,C)cyc => \(\widehat{ACK}=\widehat{APM}=\widehat{ABM}\)(2)

Lại có \(\Delta\)BFE ~ \(\Delta\)BHA, I và G lần lượt là trung điểm của FE và HA => \(\widehat{HBG}=\widehat{FBI}\)(3)

Từ (1);(2);(3) suy ra \(\widehat{ABM}=\widehat{FBI}\), mà BF trùng BA nên B,I,M thẳng hàng hay BM chia đôi EF.

20 tháng 6 2021

Bạn tham khảo thêm cách này:

Ta có \(\widehat{FGE}+\widehat{FDE}=2\widehat{BAC}+(180^0-2\widehat{BAC})=180^0\)

=> Tứ giác FGED nội tiếp, vì DG là phân giác góc EDF nên \(\Delta\)DFK ~ \(\Delta\)DGE (g.g)

=> \(DK.DG=DE.DF\)

Lại có \(\Delta\)DBF ~ \(\Delta\)DEC (g.g) => \(DE.DF=DB.DC\)

Suy ra \(DK.DG=DB.DC\)=> \(\Delta\)BDK ~ \(\Delta\)GDC (c.g.c) 

=> \(\widehat{DBK}=\widehat{DGC}\). Mà \(\widehat{DGC}\)phụ \(\widehat{GCB}\)nên BK vuông góc GC

Vậy K là trực tâm tam giác BGC.

Câu 8:

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

Nhờ các bạn giúp giải tiếp câu b và c. Thanks

 

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)