Hai vòi nước chảy cùng vào một bể không có nước thì trong 6 giờ đầy bể. Nếu vòi thứ nhất chảy trong 5 giờ, vòi thứ hai chảy trong 2 giờ thì được 8/15 bể. Hỏi mỗi vòi chảy trong bao lâu thì đầy bể? Giải bài toán bằng cách lập hệ phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian mà vòi 1 chảy 1 mình đầy bể là x, vòi 2 chảy 1 mình đầy bể là y(x,y>0, đơn vị là h). Theo đề bài ta có:
1 h thì vòi 1 chảy được là \(\dfrac{1}{x}\) (bể); 1 h vòi 2 chảy được là \(\dfrac{1}{y}\) (bể)
Vì 2 vòi cùng chảy vào 1 bể ko có nước thì 6h đầy bể nên ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Nếu vòi 1 chảy trong 2h và vòi 2 chảy trong 3 h thì được \(\dfrac{2}{5}h\) nên ta có phương trình: \(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(1\right)\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{3}\left(3\right)\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\dfrac{1}{y}=\dfrac{2}{5}-\dfrac{1}{3}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{15}\Rightarrow y=15\) Thay vào (1) ta được:
\(\dfrac{1}{x}+\dfrac{1}{15}=\dfrac{1}{6}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{5-2}{30}=\dfrac{3}{30}=\dfrac{1}{10}\Rightarrow x=10\)
Vậy ...
Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể lần lượt là x,y
Trong 1 giờ, vòi 1 chảy được 1/x(bể)
Trong 1 giờ, vòi 2 chảy được 1/y(bể)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{10}\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)
Phân số chỉ lượng nước hai vòi cùng chảy trong 1 giờ là
1:6=1/6 bể
Phân số chỉ lượng nước hai vòi cùng chảy trong 2 giờ là
2x1/6=1/3 bể
Vòi thứ nhất chảy trong 2 giờ vòi thứ hai chảy trong 3 giờ có thể coi như hai vòi cùng chảy trong 2 giờ sau đó vòi hai chảy tiếp 1 giờ nữa
Phân số chỉ lượng nước vòi hai chảy trong 1 giờ là
2/5-1/3=1/15 bể
Phân số chỉ lượng nước vòi 1 chảy trong 1 giờ là
1/6-1/15=1/10 bể
Thời gian vòi 1 chảy một mình ddaayd bể là
1:1/10=10 giờ
Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (giờ) (x>6)
thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)
Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể
⇒ 1 x + 1 y = 1 6 (1)
vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể ⇒ 2. 1 x + 3. 1 y = 2 5 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 6 2. 1 x + 3. 1 y = 2 5 ⇔ x = 10 y = 15
Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.
Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.
bai 6:
P/S chi so phan be voi thu nhat chay trong 1 gio la:
1:5=1/5(be)
P/S chi so phan be voi thu hai chay trong 1 gio la:
1:7=1/7(be)
P/S chi so phan be trong 1 gio ca hai voi cung chay la:
1/5+1/7=12/35(be)
neu hai voi cung chay thi sau:
1:12/35=2gio 55 phut
minh chi lam vay thoi chu lam het thi lau lam
Đầu bài ở dạng vòi nước chảy vào bể thì ta tạm chấp nhập logic lượng nước chảy vào là hằng số (hằng số trên 1 đơn vị thời gian).
Trong thực tế vòi nước tháo ra: áp xuất trong bể càng lớn (lượng nước trong bể càng nhiều) thì lượng nước tháo ra càng nhiều. do đó cần bổ xung thêm đầu bài là lượng nước tháo ra cũng là hằng số (hằng số trên 1 đơn vị thời gian)