K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2014

= x3 + y3 + z3 + 3x2yz + 3xy2z + 3xyz2 - x3 -y3 - z3

=3x2yz + 3xy2z + 3xyz2

= 3xyz( x + y + z)

4 tháng 12 2014

b.

x^4+2012x^2+2012x-x+2012=

(x^4-x)+2012(x^2+x+1)=

x(x-1)(x^2+x+1)+2012(x^2+x+1)=

(x+2012)(x^2+x+1)

 

1 tháng 9 2020

a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)^3+z^3+3.\left(x+y\right).z.\left(x+y+z\right)\right]-x^3-y^3-z^3\)

\(=\left[x^3+y^3+3xy.\left(x+y\right)+z^3+3\left(x+y\right).z.\left(x+y+z\right)\right]-x^3-y^3-z^3\)

\(=3xy\left(x+y\right)+3\left(x+y\right)z.\left(x+y+z\right)\)

\(=3.\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b) \(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x^3-1\right)+2012.\left(x^2+x+1\right)\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

9 tháng 9 2017

\(a\text{)}\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]-\left(y^3+z^3\right)\)

\(=\left(y+z\right)\left(3x^2+y^2+z^2+3xy+3xz+2yz\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left(3x^2+y^2+z^2+3xy+3xz+2yz-y^2+yz-z^2\right)\)

\(=\left(y+z\right)\left(3x^2+3xy+3yz+3xz\right)\)

\(=3\left(y+z\right)\left(x^2+xy+yz+xz\right)\)

\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

\(b\text{)}x^4+2012x^2+2011x+2012\)

\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)

\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2-x\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2-x+2012\right)\left(x^2+x+1\right)\)

18 tháng 8 2019

x4+2012x2+2011x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

1 tháng 9 2020

\(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

20 tháng 8 2017

1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)

\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

2) \(x^4+2012x^2+2011x+2012\)

\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)

\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

16 tháng 10 2021

a,x^2-x-y^2-y

=x^2-y^2-(x+y)

=(x-y).(x+y)-(x+y)

=(x+y).(x-y-1)

b, x^2-2xy+y^2-z^2

=(x^2-2xy+y^2)-z^2

=(x-y)^2-z^2

=(x-y-z)(x-y+z)

c,5x-5y+ax-ay( đề bài ở đây phải là -ay ms tính đc)

=(5x-5y)+(ax-ay)

=5(x-y)+a(x-y)

=(x-y).(5+a)

d,a^3-a^2.x-ay+xy

=(a^3-a^2x)-(ay-xy)

=a^2(a-x)-y(a-x)

=(a-x)(a^2-y)

e,4x^2-y^2+4x+1

={(2x)^2+4x+1}-y^2

=(2x+1)^2-y^2

=(2x+1+y^2)(2x+1-y^2)

f,x^3-x+y^3-y

=(x^3+y^3)-(x+y)

=(x+y)(x^2-xy+y^2)-(x+y)

=(x+y)(x^2-xy+y^2-1)

 

                     

18 tháng 10 2021

\(a,\Rightarrow\left(x-3-5+2x\right)\left(x-3+5-2x\right)=0\\ \Rightarrow\left(3x-8\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{8}{3}\end{matrix}\right.\\ b,=\left(x+y\right)^2-\left(x-2y\right)^2\\ =\left(x+y-x+2y\right)\left(x+y+x-2y\right)=3y\left(2x-y\right)\\ c,=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

14 tháng 8 2021

a) 15x2-5x3=5x2(3-x)

a: \(15x^2-5x^3=5x^2\left(3-x\right)\)

b: \(8x^3-y^3+4x^2y-2xy^2\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+2xy\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+4xy+y^2\right)\)

\(=\left(2x-y\right)\left(2x+y\right)^2\)

c: Ta có: \(x^8+64y^4\)

\(=x^8+16x^4y^2+64y^4-16x^4y^2\)

\(=\left(x^4+8y^2\right)^2-\left(4x^2y\right)^2\)

\(=\left(x^2-4x^2y+8y^2\right)\left(x^2+4x^2y+8y^2\right)\)

b) Ta có: \(x^3-x^2y-xy^2+y^3\)

\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)^2\)