Giải phương trình :
\(2\cdot\sqrt{5x^3+3x^2+3x-2}=x^2+6x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
Đk : x >= 2/5
pt <=> \(2\sqrt{\left(5x-2\right).\left(x^2+x+1\right)}\)= x^2 + 6x - 1
Đặt \(\sqrt{5x-2}=a\)và \(\sqrt{x^2+x+1}=b\)
=> x^2+6x-1 = a^2+b^2
pt trở thành :
2ab = a^2+b^2
<=> a^2-2ab+b^2 = 0
<=> (a-b)^2 = 0
<=> a=b
<=> 5x-2 = x^2+x+1
<=> x^2+x+1 - 5x+2 = 0
<=> x^2-4x+3 = 0
<=> (x-1).(x-3) = 0
<=> x-1=0 hoặc x-3=0
<=> x=1 ( t/m ) hoặc x=3 ( t/m )
Vậy ........
Tk mk nha