Tính:
a) \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
b)\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{59^2}{58.60}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)
\(=\frac{1^2}{101}\)
\(=\frac{1}{101}\)
Ghi chú: \(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)--> 22 chịt tiêu 2.2 (trên và dưới) làm thế này mãi đến khi còn \(\frac{1^2}{101}\).
b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)
=\(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)
= \(\frac{2}{1}.\frac{59}{60}\)
= \(\frac{59}{30}\)
Ghi chú: \(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)--> chịt tiêu liên tục, còn \(\frac{2}{1}.\frac{59}{60}\).
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)
\(=1.\frac{1}{101}=\frac{1}{101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)
\(=\frac{1}{101}\)
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)
\(=\frac{2^2.3^2.4^2....59^2}{1.3.2.4.3.5....58.60}\)
\(=\frac{\left(2.3.4...59\right)\left(2.3.4...59\right)}{\left(2.3.4...58\right)\left(3.4.5....60\right)}\)
\(=\frac{59.2}{60}=\frac{59}{30}\)
22/1.3*32/2.4*42/3.5....592/58.60
=(2.3.4....59)(2.3....59)/(1.2.3....58)(3.4.5...60)
=59.2/60
=1 29/30
=59/30
*\(\frac{x}{200}\)=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\)....\(\frac{99^2}{99.100}\)
=>\(\frac{x}{200}\)=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{99}{100}\)
=>\(\frac{x}{200}\)=\(\frac{1}{100}\)
=>100x=200
=>x=2
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
tao dóe biet
a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101
= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101
=( 2.3.4....100/2.3.4...100) . 1/101
= 1 . 1/101
=1/101
ý b tương tự nhé !