Cho tam giác ABC vuông tại A ( AB > AC )
Gọi M là trung điểm của cạnh BC. Trên tia đối của MA lấy D sao cho MD = MA. Vẽ AH vuông góc BC tại H, trên tia đối của HA lấy E sao cho HE = HA. CMR :
a) Tam giác ABM = Tam giác DCM
b) CD vuông góc AC
c) Tam giác CAE cân
d) BD = CE
e) AE vuông góc ED
a)xét tam giác ABM và tam giác DCM có:
BN=CM(GT)
góc BMA=góc CMD(đđ)
AM-DM(GT)
\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)
b)theo câu a: tam giác ABM=tam giác DCM
\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)
mà đây là cặp góc so le trong
\(\Rightarrow\)AB//CD
\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC
c) xét tam giác AHC và tam giác EHC có:
AH=EH(GT)
góc AHC=góc EHC=90 độ
HC chung
\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)
\(\Rightarrow\)CA=CE(2 cạnh tương ứng)
\(\Rightarrow\)tam giác CAE cân tại C