Cho P=\(\frac{n+15}{n-19}\)
tìm n để P là phân số
tìm n thuộc Z để P là phân số có giá trị là số nguyên
tìn n thộc Z để P=\(\frac{-8}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
\(a)\) Để A là phân số thì \(n-3\ne0\)\(\Rightarrow\)\(n\ne3\)
\(b)\) Ta có :
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để A có giá trị nguyên thì \(4⋮\left(n-3\right)\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
a/Để A là 1 phân số nen n-3 khac 0
Để n-3 khác 0 thì n khác 3
b/A= n+1/n-3 = n-3+4/n-3 = 1+ 4/n-3
Để A có giá trị nguyên thì n-3 thuộc U(4)={-1;-2;-4;1;2;4}
ta có bảng
n-3 1 2 4 -1 -2 -4
n 4 5 7 2 1 -1
Vậy với n thuộc {4;5;7;2;1;-1}thì A nguyên