Câu 3cho x-y=9 tính M=Xx(x+2)+yx(y+2)+1890(1,6 like)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
Cả hai bài đều tìm giá trị nhỏ nhất chứ bạn
a) Ta có: \(\left|\frac{x}{9}\right|\ge0\forall x\)
\(\left|y-5\right|\ge0\forall y\)
Do đó: \(\left|\frac{x}{9}\right|+\left|y-5\right|\ge0\forall x,y\)
\(\Rightarrow\left|\frac{x}{9}\right|+\left|y-5\right|+1890\ge1890\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|\frac{x}{9}\right|=0\\\left|y-5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{9}=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left|\frac{x}{9}\right|+\left|y-5\right|+1890\) là 1890 khi x=0 và y=5
b) Ta có: \(\left|x-7\right|\ge0\forall x\)
\(\left|y+13\right|\ge0\forall y\)
Do đó: \(\left|x-7\right|+\left|y+13\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-7\right|+\left|y+13\right|+1945\ge1945\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-7\right|=0\\\left|y+13\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-7=0\\y+13=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-13\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left|x-7\right|+\left|y+13\right|+1945\) là 1945 khi x=7 và y=-13