cho phân số \(\frac{a}{b}\) (a,b thuộc N,b khác 0)
giả sử\(\frac{a}{b}\)nhỏ hơn 1 và m thuộc N,m khác 0.Chứng minh rằng:
\(\frac{a}{b}\)nhỏ hơn\(\frac{a+m}{b+m}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\)< 1 <=> a < b <=> a.m < b.m <=> ab + a.m < ab + b.m
<=> a(b + m) < b(a + m)
<=> \(\frac{a}{b}\)< \(\frac{a+m}{b+m}\)
bn tham khảo ở đây: Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
ok mk nha ^^ !!!!! 536456457567568768768456457655676876234253453453453453465576
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
:D
Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)
Ta có : \(a.\left(b+m\right)=a.b+a.m\)
\(b.\left(a+m\right)=a.b+b.m\)
mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)
\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
tích chéo có phải nhanh hơn ko bạn [ mạnh vũ cường ]