\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
Tìm các sô nguyên thỏa mãn x,y sao cho :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng bdt cosi cho 2 só ko âm tương ứng: x^5+1/x....
T lớn hơn hoặc = 2x^2+2y^2+2z^2
T >= 2(x^2+y^2+z^2)
T >= 2(xy+yz+xz)
...............
3/x+y/3=5/6
<=>3/x=5/6-y/3
<=>3/x=5/6-2y/6=(5-2y)/6
<=>x.(5-2y)=3.6=18
sau đó lập bảng , tìm x,y
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
\(\frac{1}{x}=\frac{2}{5}-\frac{y}{3}\)
\(\frac{1}{x}=\frac{6}{15}-\frac{y\times5}{15}\)
\(\Rightarrow\)\(\frac{1}{x}=\frac{6-\left(y\times5\right)}{15}\)
\(\Rightarrow\)1\(\times\)15=\(x\times\left(6-y\times5\right)\)\(\Rightarrow15=x\times\left(6-y\times5\right)\)
\(\Rightarrow x,6-y\times5\in u\left(15\right)\)
phan sau tu lam tiep nhe. xin loi minh khong an duoc dau nhe!
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{x}=\frac{2}{5}-\frac{y}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{6-5y}{15}\)
\(\Rightarrow x=\frac{15}{6-5y}\)
Vì x\(\in\)Z \(\Rightarrow\)\(\frac{15}{6-5y}\) \(\in\) Z
\(\Rightarrow6-5y\in\text{Ư}\left(15\right)\)
\(\Rightarrow6-5y=1\)(các số còn lại thuộc tập các ước của 15 đều không thỏa mãn)
\(\Rightarrow y=1\)
Tại y=1 thì x=15
Vậy có 1 cặp (x;y) thỏa mãn đề bài là x=15 và y=1
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\) => \(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)
=> 5.6=x.(1+2y)
=>30=x.(1+2y)
rồi bạn tự xét các trường hợp
x=6 , y =2