tìm số hữu tỉ x để phân thức \(\frac{10}{x^2+1}\) có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: A=\(\frac{10}{x^2+1}\) x thuoc Z
=>\(x^2\) +1 U(10)={-1;1;-2;2;-5;5;-10;10}
=>\(x^2\)={-2;0;-3;1;-6;4;-11;9}
=>x={0;1;2;3}
Để P là số nguyên dương thì x^2-4x>=0 và x^2-4x chia hết cho x^2+2
=>x^2+2-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>4x+2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>16x^2-4 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>16x^2+32-36 chia hết cho x^2+2 và (x>=4 hoặc x<=0)
=>\(x^2+2\in\left\{2;3;4;6;9;12;18;36\right\}\) và (x>=4 hoặc x<=0)
=>\(x\in\left\{0;4;\sqrt{34};-\sqrt{34};-1;-\sqrt{2};-2;-\sqrt{7};-\sqrt{10};-4\right\}\)
Khi đề yêu cầu P nguyên mà ko có điều kiện x nguyên thì phương pháp tốt nhất luôn là tìm miền giá trị của P từ đó lọc ra những số nguyên rồi tìm ngược lại x
\(P=\dfrac{x^2-4x}{x^2+2}=\dfrac{-\left(x^2+2\right)+2x^2-4x+2}{x^2+2}=-1+\dfrac{2\left(x-1\right)^2}{x^2+2}\ge-1\)
\(P=\dfrac{2\left(x^2+2\right)-x^2-4x-4}{x^2+2}=2-\dfrac{\left(x+2\right)^2}{x^2+2}\le2\)
\(\Rightarrow-1\le P\le2\)
Mà \(P\) nguyên dương \(\Rightarrow P=\left\{1;2\right\}\)
- Với \(P=1\Rightarrow\dfrac{x^2-4x}{x^2+2}=1\Rightarrow-4x=2\Rightarrow x=-\dfrac{1}{2}\)
- Với \(P=2\Rightarrow\dfrac{x^2-4x}{x^2+2}=2\Rightarrow x^2+4x+4=0\Rightarrow x=-2\)
Vậy \(x=\left\{-2;-\dfrac{1}{2}\right\}\)
để 5x+9/x+5 có giá trị là 1 số nguyên
suy ra 5x+9 chia hết x+5
<=> 5x+25-16 chia hết x+5
Vì 5x+25 chia hết x+5
suy ra 16 chia hết x+5
suy ra x+5 thuộc Ư(16)=(1;-1;-2;2;4;-4;8;-8;16;-16)
suy ra x=-4;-6;3;-7;-1;-9;3;-13,11,-21
Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên
\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }
Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)
2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)
2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)
2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)
Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên
ta có : \(\frac{10}{x^2+1}\)x thuộc Z
\(\Rightarrow10⋮x^2+1\Rightarrow x^2+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Nếu : x2 + 1 = 1 => x = 0
.... tương tự trên
\(\Rightarrow x\in\left\{0;1;2;3\right\}\)
Vì \(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\frac{10}{x^2+1}>0\)
Cũng từ \(x^2+1\ge1\Rightarrow\frac{10}{x^2+1}\le\frac{10}{1}=10\)
\(\Rightarrow0< \frac{10}{x^2+1}\le10\). Mặt khác \(\frac{10}{x^2+1}\inℤ\Rightarrow\frac{10}{x^2+1}\in\left\{1;2;3;4;5;6;7;8;9;10\right\}\)