K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Đặt x/2015=y/2016=z/2017=k 

=> x=2015k

=> y=2016k

=> z=2017k

Ta có 

•(x-z)3=(2015k-2017k)3=(-2k)3=-8k(1)

•8(x-y)2(y-z)=8(2015k-2016k)2(2016k-2017k)= 8(-k)2(-k)=-8k3 (2)

Từ (1) và (2) => (x-z)3=8(x-y)2(y-z)

13 tháng 2 2020

Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên

23 tháng 2 2016

ai đó làm giúp mình , mình tích cho

23 tháng 2 2016

nhân 2 vế cho 2

=>2x2+2y2+2z2=2xy+2yz+2zx

=>2x2+2y2+2z2-2xy-2yz-2zx=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0

=>(x-y)2+(y-z)2+(z-x)2=0

mà (x-y)2 >= 0 với mọi x,y

(y-z)2 >= 0 với mọi y,z

(z-x)2 >=0 với mọi z,x

=>(x-y)2+(y-z)2+(z-x)2 >= 0

mà theo đề:(x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x=y

   y=z

   z=x

hay x=y=z

do đó x2015+y2015+z2015=32016

<=>x2015+x2015+x2015=32016

<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015

Vậy x=y=z=2015

2 tháng 1 2017

y=x+z-a (a=2016)

y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)

-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]

-3(x+z)[xz-ay]+2016^3=2017^2

2017 không chia hết cho 3 vô nghiệm nguyên

Bạn test lại xem hay biến đổi nhầm nhỉ

2 tháng 1 2017

Bị lừa rồi.

thực ra rất đơn giản

\(x-y+z=2016\)(1)

\(x^3-y^3+z^3=2017^2\)(2)

(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)

(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên

9 tháng 10 2019

Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath

Tham khảo tính được x,y,z.Thay vào A

13 tháng 12 2019

Đặt \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}=k\)

\(\Rightarrow x=2015k;y=2016k;z=2017k\)

Ta có:

\(\left(x-z\right)^3=\left(2015k-2017k\right)^3=-8k^3\left(1\right)\)

Mặt khác:

\(-8\left(x-y\right)^2\left(z-y\right)=-8\left(2015k-2016k\right)^2\left(2017k-2016k\right)\)

\(=-8k^2\cdot k=-8k^3\left(2\right)\)

Từ ( 1 );( 2 ) suy ra đpcm

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

18 tháng 8 2016
Nếu còn cần bài giải thì inbox mình
18 tháng 8 2016

Giup mình với nka^^