cho tam giác vuông tại A, đường cao AH, từ H vẽ HE, HF vuông góc với AB, AC.
a) tìm điều kiện của tam giác để tổng BE2+CF2 để đạt giá trị nhỏ nhất
b) Cm : BE2 =BH3:BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHD và tam giác ABH có:
Góc A chung
\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)
\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)
b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Vậy thì \(\widehat{DHA}=\widehat{DEA}\)
Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)
Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)
c) Gọi I là giao điểm của AO và DE.
Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC hay \(\widehat{OAC}=\widehat{OCA}\)
Lại có \(\widehat{AED}=\widehat{ABC}\) nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)
Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)
d) Ta có do \(AO\perp DE\) nên:
\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)
Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.
Xét tam giác vuông ABC, ta có
\(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)
\(\Rightarrow AH\le a\)
Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Ta có AB^2=AH^2+BH^2 (vi tam giac ABH vuong ơ H) .
Tương tư ta có AC^2=AH^2+CH^2 .=>AB^2+AC^2=2AH^2+BH^2+CH^2 .
<=>BC^2=2AH^2+BH^2+CH^2 (1) .
Lai co BH^2=BE^2+EH^2 ..................... CH^2=CF^2+HF^2 .
=>BH^2+CH^2=BE^2+CF^2+(EH^2+FH^2)=BE^2+... (vì AH^2=EH^2+FH^2) .
Thay vào (1) ta có BC^2=3AH^2+BE^2+CF^2. .
Ta có BE^2=BH^2-EH^2 ..................... CF^2=CH^2-HF^2 .
=>BE^2+CF^2=(BH^2+CH^2)-(EH^2+FH^2)=(BH... . =(BH+CH)^2-2BH*CH-AH^2
=BC^2-2AH^2-AH^2 (vi tam giac ABC vuong o A nen BH*CH=AH^2) .=4a^2-3AH^2 .
Đê BE^2+CF^2 đat min thì AH^2 dat max hay tưc là AH max .
Do goc BAC=90 nen A thuoc đương tròn đương kinh BC .
=>AH lơn nhat khi A là diem chinh giua cung BC.
Hay tam giac ABC vuong can ơ A .(chú ý bài toan chi yeu câu tim ĐK cua tam giac ABC nen ta khong can tim min cua BE^2+CF^2)
Vậy.............
Ta có BE2 = BH2 - EH2
CF2 = CH2 - FH2
=> BE2 + CF2 = BH2 + CH2 - ( EH2 +FH2)= BH2 + CH2 - EF2 = BH2 + CH2 - AH2 = BH2 + CH2 - BH*HC>= 2 BH*HC - BH*HC
= BH*HC (BĐT Cô-si)
Dấu = xảy ra khi BH=HC hay tam giác ABC vuông cân.