Cho biểu thức: \(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\).
So sánh A với 3.
Giúp mình nha, mình đang cần cực kì gấp (trong ngày hôm nay)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích thêm: ta thấy \(\frac{1}{2^2}>\frac{1}{100}\),...,\(\frac{1}{10^2}=\frac{1}{100}\)=> từ \(\frac{1}{2^2}\)đến \(\frac{1}{10^2}\)có 5 cặp
\(\frac{1}{12^2}< \frac{1}{100}\),...,\(\frac{1}{100^2}< \frac{1}{100}\)=> từ \(\frac{1}{12^2}\)đến \(\frac{1}{100^2}\)có 45 cặp
=> 45>5 => tổng < 1/2 (kết hợp với cái kia nx thì bn mới hiểu)
a/b= (1+1/6) + (1/2+1/5) + (1/3+1/4)
a/b= 7/6 + 7/10 + 7/12
a/b= 7(1/6+1/10+1/12)
Vì 6x10x12 khong la boi so cua 7 => a/b chia het cho 7 <=> a chia het cho 7 (dpcm)
1) \(\frac{5-2n}{n-1}=\frac{5-2n+2-2}{n-1}=\frac{5-2-2.\left(n-1\right)}{n-1}=\frac{3}{n-1}-\frac{2.\left(n-1\right)}{n-1}=\frac{3}{n-1}+2\)
Để biểu thức trên nguyên thì \(\frac{3}{n-1}\) nguyên => \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)\)
=> \(n-1\in\left\{1;-1;3;-3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
2) \(\frac{3n-4}{n-1}=\frac{3n-3-1}{n-1}=\frac{3.\left(n-1\right)-1}{n-1}=\frac{3.\left(n-1\right)}{m-1}-\frac{1}{n-1}=3-\frac{1}{n-1}\)
Để biểu thức trên nguyên thì \(\frac{1}{n-1}\) nguyên
=> \(1⋮n-1\)
=> \(n-1\inƯ\left(1\right)\)
=> \(n-1\in\left\{1;-1\right\}\)
=> \(n\in\left\{2;0\right\}\)
Vậy \(n\in\left\{2;0\right\}\)
c) \(\frac{6n-5}{2n-4}=\frac{6n-12+7}{2n-4}=\frac{3.\left(2n-4\right)+5}{2n-4}=\frac{3.\left(2n-4\right)}{2n-4}+\frac{5}{2n-4}=3+\frac{5}{2n-4}\)
Để biểu thức trên nguyên thì \(\frac{5}{2n-4}\) nguyên => \(5⋮2n-4\)
=> \(2n-4\inƯ\left(5\right)\)
Mà 2n - 4 là số chẵn \(\forall\) n nguyên nên không tìm được giá trị của n thỏa mãn vì 5 là số lẻ, không có ước chẵn
Vậy không tồn tại giá trị của n thỏa mãn đề bài
Bài 1 :
\(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(ĐKXĐ:x\ne3\right)\)
\(\Leftrightarrow5\left(x^3-9x\right)=-\left(x^2+3x\right)\left(15-5x\right)\)
\(\Leftrightarrow5x^3-45x=5x^3-45\) ( luôn đúng )
Do đó : \(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(x\ne3\right)\)
P/s : Bài này thì xét tích chéo của hai số thôi nhé @
Ta có:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
\(\Rightarrow A=\frac{50}{51}:2=\frac{25}{51}\)
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)
\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)
Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)
\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)
\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)
\(\Rightarrow A< 3\)