Tìm số nguyên x biết:
a,3^x+3^x+1+3^x+2-1=1052
b,(x^2-49)(81-x^2)>=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+2x+1+2x+2+2x+3=480
<=> \(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)
<=> \(2^x.\left(1+2+2^2+2^3\right)=480\)
<=>\(2^x=\frac{480}{1+2+2^2+2^3}=32\)
=> x=5
b) (x2-49)*(x2-81)<0 Khi \(\hept{\begin{cases}x^2-49< 0\\x^2-81>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2-49>0\\x^2-81< 0\end{cases}}\)
TH1 \(\hept{\begin{cases}x^2-49< 0\\x^2-81>0\end{cases}}\)\(\Rightarrow81< x^2< 49\)(Vô lí)
TH2\(\hept{\begin{cases}x^2-49>0\\x^2-81< 0\end{cases}}\) \(\Rightarrow49< x^2< 81\)\(\Leftrightarrow7^2< x^2< 9^2\)Mà x nguyên \(\Rightarrow x=8\)
c) Làm giống câu a
a: x/2=-5/y
=>xy=-10
=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)
b: =>xy=12
mà x>y>0
nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
c: =>(x-1)(y+1)=3
=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)
d: =>y(x+2)=5
=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)
\(\left(2x-3\right)^2=7^2\)
\(2x-3=7\)
\(2x=10\)
\(x=5\)
Vậy x=5
a: \(\left(2x-3\right)^2-49=0\)
\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
a) \(\Rightarrow\left(2x-3\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, ⇒ (2x - 3)2 = 49
⇒ (2x - 3)2 = \(\left(\pm7\right)^2\)
⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0
⇒ (x - 5).(2x + 7) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c, ⇒ x2 - 5x + 2x - 10 = 0
⇒ (x2 - 5x) + (2x - 10) = 0
⇒ x.(x - 5) +2.(x - 5) = 0
⇒ (x - 5).(x + 2)=0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
a, => 3^x.(1+3+3^2)-1 = 1052
=> 3^x.13 = 1052+1 = 1053
=> 3^x = 1053 : 13
=> 3^x = 81 = 3^4
=> x = 4
b, => x^2-49 >=0 ; 81-x^2 >=0 hoặc x^2-49 < = 0 ; 81-x^2 < = 0
=> 49 < = x^2 < = 81
=> -9 < = x < = -7 hoặc 7 < = x < = 9
=> x thuộc {-9;-8;-7;7;8;9}
Tk mk nha
Cảm ơn bạn nhiều nha^^ !