tìm các giá trị nguyên của x sao cho biểu thức P=2x-1/2x+1 nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=2x-1/2x+1
=2x+1-2/2x+1
=1-2/2x+1
Để P nguyên thì 2 chia hết 2x+1
nên 2x+1 thuộc ước của 2
ta có:
2x+1=1 thì x=0
2x+1=2 thì x=1/2
2x+1=-1 thì x=-1
2x+1=-2 thì x=-3/2
Để \(P=\frac{2x-1}{2x+1}\)nhận giá trị nguyên
\(\Rightarrow2x-1⋮2x+1\)
\(\Rightarrow2x+1-2⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(2x+1=1\Rightarrow x=0\)
\(2x+1=-1\Rightarrow x=-1\)
\(2x+1=2\Rightarrow x=\frac{1}{2}\)
\(2x+1=-2\Rightarrow x=\frac{-3}{2}\)
KL :....
\(P=\dfrac{2x+3}{3x+1}\) là số nguyên suy ra \(3P=\dfrac{6x+9}{3x+1}=\dfrac{6x+2+7}{3x+1}=2+\dfrac{7}{3x+1}\inℤ\)
\(\Leftrightarrow\dfrac{7}{3x+1}\inℤ\Rightarrow3x+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\) (vì \(x\) nguyên)
\(\Leftrightarrow x\in\left\{0,2\right\}\) (vì \(x\) nguyên)
Thử lại đều thỏa mãn.
+ Thông thường biểu thức A sẽ có dạng trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0
+ Cách làm:
- Bước 1: Tách về dạng trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên
- Bước 2: Để A nhận giá trị nguyên thì nguyên hay nghĩa là g(x) thuộc tập ước của k
- Bước 3: Lập bảng để tính các giá trị của x
- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán
2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng . Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:
\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)
Lời giải:
Để $A$ nguyên thì \(x-3\vdots 2x+3\)
\(\Leftrightarrow 2(x-3)\vdots 2x+3\)
\(\Leftrightarrow 2x-6\vdots 2x+3\Leftrightarrow 2x+3-9\vdots 2x+3\)
\(\Leftrightarrow 9\vdots 2x+3\Rightarrow 2x+3\in\left\{\pm 1;\pm 3;\pm 9\right\}\)
\(\Rightarrow x\in \left\{-2; -1; 0; -3; -6; 3\right\}\)
Để P nhân giá trị nguyên thì 2x-1 chia hết cho 2x+1
=> (2x+1)-2 chia hết cho 2x+1
=> 2 chia hết cho 2x+1
=> 2x+1 thuộc ước của 2 ( vì x thuộc Z nên 2x+1 cũng thuộc Z )
Mà 2x+1 lẻ => 2x+1 thuộc {-1;1}
=> x thuộc {-1;0}
Vậy ...........
Tk mk nha
\(P=\frac{2x-1}{2x+1}=\frac{\left(2x+1\right)-2}{2x+1}=1-\frac{2}{2x+1}\)
Để P nhận giá trị nguyên => \(\frac{2}{2x+1}\) phải nguyên => 2 chia hết cho 2x + 1.