K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Trả lời hô mình

25 tháng 2 2022

\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{98.100}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\\ =\dfrac{1}{2}-\dfrac{1}{100}\\ =\dfrac{49}{100}\)

25 tháng 2 2022

\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+....+\dfrac{2}{98.100}\)\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{98}-\dfrac{1}{100}\)

                                                   \(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{50}-\dfrac{1}{52}=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{25}{52}\)

17 tháng 8 2016

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2004.2006}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2004}-\frac{1}{2006}\)

\(=\frac{1}{2}-\frac{1}{2006}\)

\(=\frac{1003}{2006}-\frac{1}{2006}\)

\(=\frac{1002}{2006}\)

\(=\frac{501}{1003}\)

Sửa đề: \(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2018\cdot2020}+\dfrac{4}{2020\cdot2022}\)

Ta có: \(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2018\cdot2020}+\dfrac{4}{2020\cdot2022}\)

\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2018\cdot2020}+\dfrac{2}{2020\cdot2022}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2018}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(=2\cdot\dfrac{505}{1011}\)

\(=\dfrac{1010}{1011}\)

a) Ta có: \(\dfrac{1}{2022}-\dfrac{5}{2\cdot4}-\dfrac{5}{4\cdot6}-\dfrac{5}{6\cdot8}-...-\dfrac{5}{2020\cdot2022}\)

\(=\dfrac{1}{2022}-5\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2020\cdot2022}\right)\)

\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2020\cdot2022}\right)\)

\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(=\dfrac{1}{2022}-\dfrac{5}{2}\cdot\dfrac{1010}{2022}\)

\(=\dfrac{1}{2022}-\dfrac{2025}{2022}=\dfrac{-1262}{1011}\)

b) Ta có: \(\dfrac{2^2}{1\cdot3}+\dfrac{2^2}{3\cdot5}+...+\dfrac{2^2}{197\cdot199}\)

\(=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{197\cdot199}\right)\)

\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{197}-\dfrac{1}{199}\right)\)

\(=2\left(1-\dfrac{1}{199}\right)\)

\(=2\cdot\dfrac{198}{199}=\dfrac{396}{199}\)