A=1/2+3/4+5/6+........+199/200
chung to rang A^2<1/200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)
C= (1/2).(3/4).(5/6).....(199/200).
C= (1.3.5….199)/(2.4.6…200)
C²= 1².3².5²….199²/(2².4².6²…200²)
Ta có: k²>k²-1=(k-1)(k+1) nên 2²>1.3; 4²>3.5 … 200²>199.201.
=>
C² < 1².3².5²….199²/[(1.3).(3.5).(5.7)…(199.2...
=1².3².5²….199²/(1.3.3.5.5.7…199.201)
=1².3².5²….199²/(1.3².5².7²…199².201)
=1/201
a: =(-1)+(-1)+...+(-1)=-1011
b: =(-5)+(-5)+...+(-5)=-175
Ta có:
= ` . . `
< ``
< ``
.
Để chứng minh A > 14, ta làm giảm mỗi phân số của A bằng cách dùng bất đẳng thức:
` > `.
Chứng minh tương tự ta có:
Vậy .