K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có

góc HBI=góc ABD

=>ΔBHI đồng dạng với ΔBAD

=>BH/BA=BI/BD

=>BH*BD=BA*BI

a) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất đường phân giác)

hay \(IA\cdot BH=IH\cdot BA\)(đpcm)

a: Xét ΔBHA có BI là phân giác

nên IA/IH=BA/BH

hay \(IA\cdot BH=BA\cdot IH\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: BC=10cm

Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)

a: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm; CD=40/7cm

b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

9 tháng 5 2023

loading...  

a) Do AD là phân giác của ∠A

⇒ DB/DC = 8/6 = 4/3

b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠HAB = ∠HCA (cùng phụ ∠B)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/CH = AB/CA

9 tháng 5 2023

loading...  

a) Do AD là phân giác của ∠A

⇒ DB/DC = 8/6 = 4/3

b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠HAB = ∠HCA (cùng phụ ∠B)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/CH = AB/CA

a: DB/DC=AB/AC=4/3

b: Sửa đề: AH/CA=AB/BC

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>AH*BC=AB*AC

=>AH/AC=AB/CB