K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

a) A  = 1+32+34+36+...+32006​.

2A= (32+32006)+(34+32004)+.....15988 cặp số..+2

= 32038.15988 + 2

= 512223546
Vậy tổng của A = 512223546
Số dư của A chia cho 113= 512223546 - 113.4532951=83 (Đây là cách tính số dư: Số chia - số bị chia x phần nguyên)

25 tháng 3 2016

A= (1+3^2+3^4)+.......+(2^2002+2^2004+2^2006)

 = 91+......+ 2^2002.(1+3^2+3^4)

= 91+.+ 2^2002.91 chia hết cho 91 (đpcm)

27 tháng 3 2016

b, Ta có: 9A= 3^2+3^4+....+3^2008

               9A-A= 3^2008-1 => 8A= 3^2008-1 => 8A+1= 3^2008

 Thay vào ta có 27^263x.9^5y = 3^2008 => 9^263x.3^263x.9^5y= 3^2008 => 9^( 263x+5y).3^263x= 3^2008

 => 3^263x= 3^2008-9^( 263x+5y) => 3^263x= 9^1004-9^( 263x+5y) => 3^263x= 3^{2.(1004-263x-5y)}

=>  263x= 2008-2.263x-10.y => 263x+2.263.x+ 10y= 2008

=> 789x + 10y= 2008 . Vì 10y chia hết cho 2; 2008 chia hết cho 2 => 789x chia hết cho 2.

 Mà (789; 2)=1 => x chia hết cho 2 . Do x là số nguyên tố nên x= 2 => y = 43.

 Vậy (x; y)= (2; 43)

 Không biết đúng không ^o^

22 tháng 12 2021

Lồn bâm

22 tháng 12 2021

Gâu gâu 

1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7

=> 4 (a - 3) chia hết cho 7  => 4a - 12 chia hết cho 7

=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)

a chia cho 13 dư 11 => a - 11 chia hết cho 13

=> 4 (a - 11) chia hết cho 13  => 4a - 44 chia hết cho 13

=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)

a chia cho 17 dư 14 => a - 14 chia hết cho 17

=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17

=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)

Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)

Mà a nhỏ nhất => 4a - 5 nhỏ nhất

=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547

=> 4a = 1552  => a= 388

2. Gọi ƯCLN(a,b) = d

=> a = d . m          (ƯCLN(m,n) = 1)

     b = d . n  

Do a < b => m<n

Vì BCNN(a,b) . ƯCLN(a,b) = a . b

\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)

Vì BCNN(a,b) + ƯCLN(a,b) = 19

=> m . n . d  + d = 19

=> d . (m . n + 1) = 19

=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)

Ta có bảng sau:

d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9

Vậy (a,b) = (2;9) ; (1 ; 18)

3.