Hai điểm M và K thứ tự nằm trên cạnh AB và BC của tam giác ABC; hai đoạn thẳng AK và CM cắt nhau tại P. Biết rằng AP = 2PK và CP = 2PM.
Chứng minh rằng AK và CM là các trung tuyến của tam giác ABC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △ PAC và △ PKM,ta có:
Suy ra:
Lại có: ∠ (APC) = ∠ (KPM) (đối đỉnh)
Suy ra: △ PKM đồng dạng △ PAC(c.g.c) với tỉ số đồng dạng k = 1/2
Suy ra: (1)
Vì △ PKM đồng dạng △ PAC nên ∠ (PKM) = ∠ (PAC)
Suy ra: KM //AC (vì có cặp góc ở vị trí so le trong bằng nhau)
Trong △ ABC, ta có: KM // AC
Suy ra: △ BMK đồng dạng △ BAC (g.g)
Suy ra: (2)
Từ 1 và (2) suy ra:
Vì BM = 1/2 BA nên M là trung điểm AB.
Vì BK = 1/2 BC nên K là trung điểm BC.