Cho tam giác ABC có B =90 độ. Vẽ BH vuông góc AC; HK vuông góc BC; KP vuông góc AC
a) So sánh góc KHC và góc BAC;góc PKC và góc HBC;góc ABH và góc BHK
b) Chứng minh góc CHK= góc HBC
Vẽ hình giúp mình luôn nha.Cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> góc ABD = góc HBD = 30 độ
Xét tam giác ABC ta có
góc ABC + góc ACB + góc BAC = 180 độ
=> góc ACB = 30 độ
Ta có góc BDH = 90 độ - 30 độ = 60 độ
góc CDH = 90 độ - 30 độ 60 độ
Tam giác BHD = tam giác CHD ( g.c.g )
=> BH = CH ( hai cạnh tương ứng ) ( 1 )
Tam giác CHD vuông tại H => CD > CH ( trong tam giác vuông cạnh huyền là cạnh lớn nhất ) ( 2 )
Từ (1) và (2) => BH < CD
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Giải: Xét t/giác BHC có góc H = 900
=> góc HBC + góc C = 900 (...)
=> góc C = 900 - góc HBC = 900 - 200 = 700
Vì t/giác ABC cân tại A => góc B = góc C
Xét t/giác ABC có góc A + góc B + góc C = 1800 (tổng 3 góc của 1 t/giác)
=> góc A = 1800 - 2.góc C = 1800 - 2.700 = 1800 - 1400 = 400
Vậy góc A = 400