K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

ta có A.B=1+1+1+...+1=202.1=202

vậy C=202

30 tháng 8 2016

a=1.2+2.3+3.4+4.+....+200.201

3A = 1.2.(3 - 0) + 2.3.(4 - 1) + .... + 200.201.(202 - 199)

3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + .... + 200.201.202

3A = 200.201 . 202

A = 2706800

30 tháng 8 2016

\(A=1.2+2.3+3.4+...+200.201\)

\(\frac{1}{A}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)

\(\frac{1}{A}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)

\(\frac{1}{A}=\frac{1}{1}-\frac{1}{201}=\frac{200}{201}\)

\(A=1:\frac{200}{201}=\frac{1.201}{200}=\frac{201}{200}\)

7 tháng 9 2016

2706800 chắc chắn bạn nhé

12 tháng 1 2019

A = 2 + 3.4 + 5.6 + 7.7 + 8.8 + 9...199 + 200.201 + 202

A = SCSH: ( 202 - 2 ) : 2 + 1 = 101 ( số hạng )

A = Tổng: ( 202 + 2 ) . 101 : 2 = 10302

Vậy Tổng của A = 10302

Hk tốt,

k nhé

12 tháng 1 2019

Cảm ơn nhé!

29 tháng 8 2018

\(A=1.2.3...100-1.2.3.4...99-1.2.3.4....99^2\)

\(=1.2.3....99.\left(100-1\right)-1.2.3...98.99^2\)\(=1.2.3...99^2-1.2.3...99^2=0\)

15 tháng 2 2021

Ta có :

A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n

A = 1! + 2! + 3! + 4! + ... + n!

Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5)  nên tổng của chúng cũng tận cùng là 0.

\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0) 

A = (......3) + (.....0)

A = (......3)

Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)