Cho A = 1.2.3.4.....200.201;cho B = 1/1+1/2+1/3+...+1/200+1/201
Chứng minh rằng : A.B chia hết cho 202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1.2+2.3+3.4+4.+....+200.201
3A = 1.2.(3 - 0) + 2.3.(4 - 1) + .... + 200.201.(202 - 199)
3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + .... + 200.201.202
3A = 200.201 . 202
A = 2706800
\(A=1.2+2.3+3.4+...+200.201\)
\(\frac{1}{A}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(\frac{1}{A}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)
\(\frac{1}{A}=\frac{1}{1}-\frac{1}{201}=\frac{200}{201}\)
\(A=1:\frac{200}{201}=\frac{1.201}{200}=\frac{201}{200}\)
A = 2 + 3.4 + 5.6 + 7.7 + 8.8 + 9...199 + 200.201 + 202
A = SCSH: ( 202 - 2 ) : 2 + 1 = 101 ( số hạng )
A = Tổng: ( 202 + 2 ) . 101 : 2 = 10302
Vậy Tổng của A = 10302
Hk tốt,
k nhé
\(A=1.2.3...100-1.2.3.4...99-1.2.3.4....99^2\)
\(=1.2.3....99.\left(100-1\right)-1.2.3...98.99^2\)\(=1.2.3...99^2-1.2.3...99^2=0\)
Ta có :
A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n
A = 1! + 2! + 3! + 4! + ... + n!
Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5) nên tổng của chúng cũng tận cùng là 0.
\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0)
A = (......3) + (.....0)
A = (......3)
Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)