K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)

dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)

NV
13 tháng 1 2021

Tìm điều gì của M bạn?

13 tháng 1 2021

Mình nghĩ là tìm Min, Max \(M=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\).

Tìm Min: Ta có \(M^2\ge a+b+b+c+c+a=2\left(a+b+c\right)\ge2\sqrt{a^2+b^2+c^2}=2\).

Do đó \(M\geq\sqrt{2}\).Đẳng thức xảy ra khi a = b = 0; c = 1.

Tìm Max: Ta có \(M\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}=\sqrt[4]{108}\).

NV
27 tháng 2 2021

\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)

\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

27 tháng 2 2021

`A=(a+1/b)(b+1/a)`

`=ab+1+1+1/(ab)`

`=2+ab+1/(16ab)+15/(16ab)`

Áp dụng cosi

`=>ab+1/(16ab)>=1/2`

`ab<=(a+b)^2/4=1/4`

`=>16ab<=4`

`=>15/(16ab)>=15/4`

`=>A>=15/4+1/2+2=25/4`

Dấu "=" xảy ra khi `a=b=1/2`

NV
21 tháng 11 2021

\(A=2\left(x^2+y^2\right)+\left(8y^2+\dfrac{1}{2}z^2\right)+\left(8x^2+\dfrac{1}{2}z^2\right)\ge2.2\sqrt{x^2y^2}+2\sqrt{8x^2.\dfrac{1}{2}z^2}+2.\sqrt{8x^2.\dfrac{1}{2}z^2}=4\left(xy+yz+zx\right)=4\)

\(A_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

21 tháng 11 2021

em cảm ơn thầy 

30 tháng 12 2022

a: =>x-1+11 chia hết cho x-1

=>\(x-1\in\left\{1;-1;11;-11\right\}\)

=>\(x\in\left\{2;0;12;-10\right\}\)

b: =>2n+6+9 chia hết cho n+3

=>\(n+3\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(n\in\left\{-2;-4;0;-6;6;-12\right\}\)

5 tháng 10 2017

abcabc = abc . 1000 + abc

<=> abcabc = abc . (1000 + 1) = abc . 1001

Suy ra a . bcd . abc = abcabc 

<=> a . bcd . abc = abc . 1001

<=> a . bcd = 1001

Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143

Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3